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Abstract

In the setting of a Gaussian channel without power constaproposed by Poltyrev, the
codewords are points in an-dimensional Euclidean space (an infinite constellatiom ¢he
tradeoff between theidensityand the error probability is considered. The capacity is gatting
is the highest achievable normalized log density (NLD) witinishing error probability. This
capacity as well as error exponent bounds for this settiegkaown. In this work we consider
the optimal performance achievable in the fixed blockler{dtinension) regime. We provide two
new achievability bounds, and extend the validity of theesptbound to finite dimensional infinite
constellations. We also provide asymptotic analysis oftibands: When the NLD is fixed, we
provide asymptotic expansions for the bounds that are fgignily tighter than the previously
known error exponent results. When the error probabilitfixed, we show that as grows, the
gap to capacity is inversely proportional (up to the firsterjdto the square-root ofi where
the proportion constant is given by the inverse Q-functibthe allowed error probability, times
the square root o%. In an analogy to similar result in channel coding, the disjpa of infinite
constellations is%nat2 per channel use. All our achievability results use lattiees therefore
hold for the maximal error probability as well. Connectidnsthe error exponent of the power
constrained Gaussian channel and to the volume-to-ndigeas a figure of merit are discussed.
In addition, we demonstrate the tightness of the resultsanigally and compare to state-of-the-art
coding schemes.

Index Terms

Infinite constellations, Gaussian channel, Poltyrev sgttPoltyrev exponent, finite block-
length, dispersion, precise asymptotics

I. INTRODUCTION

Coding schemes over the Gaussian channel are traditidimaitgd by the average/peak
power of the transmitted signall[1]. Without the power riesion (or a similar restriction)
the channel capacity becomes infinite, since one can spaceottewords arbitrarily far
apart from each other and achieve a vanishing error prabaliowever, many coded
modulation schemes take an infinite constellation (IC) agstrict the usage to points of
the IC that lie within some:-dimensional form in Euclidean space (a ‘shaping’ region).
Probably the most important example for an IC is a lattice (8gy.[1), and examples for
the shaping regions include a hypersphere gimensions, and a Voronoi region of another
lattice [2].
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(a) A lattice (b) A non-lattice infinite constellation

Fig. 1. Examples for 2-dimensional infinite constellatio@ly a finite section of the IC is shown.

In 1994, Poltyrev|[3] studied the model of a channel with Gaars noise without power
constraints. In this setting the codewords are simply goaitthe infinite constellation in
the n-dimensional Euclidean space. The analog to the numberddveards is the density
~ of the constellation points (the average number of pointsupé volume). The analog
of the communication rate is the normalized log density (VD= %logy. The error
probability in this setting can be thought of as the averager gorobability, where all the
points of the IC have equal transmission probability (meaiefinitions follow later on in
the paper).

Poltyrev showed that the NLD is the analog of the rate in classical channel coding, and
established the corresponding “capacity”, the ultimatatlifor the NLD denoted* (also
known as Poltyrev’s capacity), given %}log ﬁ wheres? denotes the noise variance per
dimensiofl. Random coding, expurgation and sphere packing error exdmounds were
derived, which are analogous to Gallager’s error exponientse classical channel coding
setting [4], and to the error exponents of the power-comstth additive white Gaussian
noise (AWGN) channel |5], [4].

In classical channel coding, the channel capacity givesuttimate limit for the rate
when arbitrarily small error probability is required, arfteterror exponent quantifies the
(exponential) speed at which the error probability goesdm zas the dimension grows,
where the rate is fixed (and below the channel capacity). fi/pis of analysis is asymptotic
in nature - neither the capacity nor the error exponent thean tell what is the best
achievable error probability with a given rateand block length:. A big step in the non-
asymptotic direction was recently made in a paper by Pokgret al. [6], where explicit
bounds for finiten were derived. In addition to the error exponent formulatianother
asymptotic question can be asked: Suppose that the (codpewor probability is fixed

Yogarithms are taken w.r.t. to the natural basaend rates are given in nats.
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to some values. Let R.(n) denote the maximal rate for which there exist communication
schemes with codelength and error probability at most As n grows, R.(n) approaches
the channel capacity’, and the speed of convergence is quantified/ by [7][6]

\/762 (logn) | )

whereQ~(-) is the inverse complementary standard Gaussian cumutdititrébution func-
tion. The constanV termed the channel dispersion, is the variance of the nmdition
spectrumi(z;y) £ log P};f;’ ©v)_ for a capacity-achieving distribution. This result holds
for discrete memoryless channels (DMC's), and was recamtgnded to the (power con-
strained) AWGN channel [8][6]. More refinements bf (1) andtier details can be found

in [6].

In this paper we take an in-depth look at the unconstraineds&an channel where
the block length (dimension) is finite. We give new achieligbibounds which enable
easy evaluation of the achievable error probability. Wentaealyze the new achievability
bounds and the so-called sphere bound (converse boundpktach asymptotic analysis
of the lowest achievable error probability for fixed NLdDwhich greatly refines Poltyrev’s
error exponent results. In addition, we analyze the behadfiche highest NLD when the
error probability is fixed. We show that the behavior demiatstl in [1) for DMC'’s and the
power constrained AWGN channel carries on to the uncomstdaAWGN channel as well.
We demonstrate the tightness of the results both anallytiaad numerically, and compare
to state-of-the-art coding schemes.

The main results in the paper are summarized below.

A. New Finite-Dimensional Performance Bounds

Poltyrev’s achievability results [3] for the capacity arat the error exponent are based
on a bound that holds for finite dimensions, but is hard toutate, as it involves optimizing
w.r.t. a parameter and 3-dimensional integration. We detivo new bounds that hold for
finite dimensions, and are easier to calculate than Poltrréke Poltyrev’s bound, we
bound the error probability by the sum of the probabilityttttze noise leaves a certain
region (a sphere), and the probability of error for noiselizadion within that sphere.
This classic technique is due to Gallager [9], sometimeeddiGallager’s first bounding
technique”[[10]. Our first bound, called tigpicality boundis based on a simple ‘typicality’
decoder (close in spirit to that used in the standard achiktyaproofs [11]). It shows that
there exist IC's with NLDé and error probability bounded by

P, < PTB(n, &) £ ™V,r" 4+ Pr{||Z|| > r}, (2

whereV,, denotes the volume of anrdimensional sphere with unit radius [12] aAdlenotes
the noise vector. The bound holds for any- 0, and the value minimizing the bound is
given byr = o/n(1 + 26* — 28). Evaluating this bound only involves 1D integration, and
the simple expression is amenable to precise asymptotlgsasiaA stronger bound, called
the maximum likelihood (ML) boundvhich is based on the ML decoder, shows that there
exist IC’s with error probability bounded by

P, < PMLB(, §) & cndy, / ()i di + Pr{|Z] >}, 3)
0
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fr(+) is the pdf of the norm|Z|| of the noise vector. The bound holds for any- 0, and
the value minimizing the bound is given by= r £ e‘5Vn_1/”. Note thatr.g, called
the effective radiusof the lattice (or IC), is the radius of a sphere with the samkime
as the Voronoi cell of the lattice (or the average volume @f Yoronoi cells of the IE).
Evaluating the ML bound also involves 1D integration onlye Wirther show that the ML
bound gives the exact value of Poltyrev’'s bound, therefoeesimplicity does not come at
the price of a weaker bound.

In the achievability part of the results we use lattices (dr@dMinkowski-Hlawka theorem
[13][14]). Because of the regular structure of lattices$,ocalr achievability results hold in
the stronger sense of maximal error probability. In the eos® part we base our results on
the sphere bound [15][3][16], i.e. on the fact that the emabability is lower bounded by
the probability that the noise leaves a sphere with the sashene as a Voronoi cell. For
lattices (and more generally, for IC’s with equal-volumer®oi cells), it is given by

P, > PB(n,8) 2 Pr{||Z|| > res} (4)

We extend the validity of the sphere boundaay IC, and to the stronger sense aferage
error probability. Therefore our results hold for both ag and maximal error probability,
and for any IC (lattice or not).

Note that since the optimal value forin the ML bound [(B) is exactly.q, the difference
between the ML upper bound and the sphere packing lower butite left term in [(B).
This fact enables a precise evaluation of the best achievablsee Sectioh V.

B. Asymptotic Analysis: Fixed NLD

The asymptotics of the bounds on the error probability wasdied by Poltyrevi[3] using
large deviation techniques and error exponents. The erporeent for the unconstrained
AWGN is defined in the usual manner:

E(6) £ lim llog P.(n,d), (5)
n—oo M,

(assuming the limit exists), wher (n, §) is the best error probability for any IC with NLD
4. Poltyrev showed that the error exponent is bounded by thdara coding and sphere
packing exponent&, (d) and E,,(§) which are the infinite constellation counterparts of
the similar exponents in the power constrained AWGN. Theloam coding and sphere
packing exponents coincide when the NLD is above the cltitdlaD 6., defined later
on. However, even when the error exponent bounds coindigepptimal error probability
P.(n,d) is known only up to an unknown sub-exponential term (which loe, for example
n'%, or worse, e.gev"). We present a significantly tighter asymptotic analysismigisa
more delicate (and direct) approach. Specifically, we shwat the sphere bound is given
asymptotically by
_1e2(8%-9)

SB ~ _—nEsp(b (nm)
Pe (n, 5) =¢e ( )W, (6)

2Note that the average volume of the Voronoi cells is not asvagll-defined, as in general there may exist cells with
infinite volume. Se&1V-D for more details.
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wherea = b means that — 1. We further show that the ML bound is given by

e ") 8 < b
—nEq(d)__1 _ .
U LR S 0= 0ur (7)
nmw 7%62(6 - *
e "E(9) () , 0o <8< 8%

9_o2(6%—8)) (e2(6* —8)_1
( I )

As a consequence, for NLD above,, P.(n,d) is known asymptotically up ta constant
compared to a sub-exponential term in Poltyrev’s error agpbd analysis. The weaker
typicality bound is given by

1 1+42(6"—)9)
Vnmo 2(8" —9)
whereE,(d) is thetypicality exponentdefined later on, which is lower thds, (4).

PTB(TL 5) ~ —nEf(é) (8)

C. Asymptotic Analysis: Fixed Error Probability

For a fixed error probability value, let d.(n) denote the maximal NLD for which there
exists an IC with dimensiom and error probability at most. We shall be interested in
the asymptotic behaviod.(n). This type of analysis for infinite constellations has never
appeared in literature (to the best of the authors’ knowd¢diay the current paper we utilize
central limit theorem (CLT) type tools (specifically, therBeEsseen theorem) to give a
precise asymptotic analysis 6f(n), a result analogous to the channel dispersion [7][8][6]
in channel coding. Specifically, we show that

\/762 —l——logn—l—O(l) 9)
n

By the similarity to Eq.[(IL), we identify the consta;btas the dispersion of infinite constel-
lations. This fact can be intuitively explained in severalys:

« The dispersion as the (inverse of the) second derivativeh@fetrror exponentfor
DMC'’s and for the power constrained AWGN channel, the chhdispersion is given
by the inverse of the second derivative of the error expoerealuated at the capacity
[6]. Straightforward differentiation of the error expondf(d) (which near the capacity
is given byE, (8) = E,,(9)) verifies the value of.

« The unconstrained AWGN channel as the high-SNR AWGN chaithée the capacity
of the power constrained AWGN channel grows without bounith wie SNR, the error
exponent attains a nontrivial limit. This limit is the errexponent of the unconstrained
AWGN channel (as noticed in[2]), where the distance to ciéypas replaced by the
NLD distance tod*. By this analogy, we examine the high-SNR limit of the dispen
of the AWGN channel (given in[[&][6] by: (1 — (1 + SNR)~?)) and arrive at the
expected value of.

D. Volume-to-Noise Ratio (VNR)

Another figure of merit for lattices (that can be defined fongral IC’s as well) is the
volume-to-noise ratio (VNR), which generalizes the SNRiow{16] (see also [17]). The
VNR quantifies how good a lattice is for channel coding over timconstrained AWGN
at some given error probability. It is known that for any= > 0, the optimal (minimal)



6 SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY

VNR of any lattice approachelswhen the dimension grows (see e.gl [17]). We note that
the VNR and the NLD are tightly connected, and deduce eqemdinite-dimensional and
asymptotic results for the optimal VNR.

The paper is organized as follows. In Secfidn Il we define ttations and in Sectidn |
we review previous results. In Sectibnl IV we derive the nepidglity and ML bounds for
the optimal error probability of finite dimensional IC’s,damwe refine the sphere bound as
a lower bound on the average error probability for any finiteehsional IC. In SectionV
the bounds are analyzed asymptotically with the dimensiberes the NLD is fixed, to
derive asymptotic bounds that refine the error exponent dmuim Sectiori M| we fix the
error probability and study the asymptotic behavior of tipdiroal achievable NLD with
n. We use normal approximation tools to derive the disperii@orem for the setting. In
Section VIl we compare the bounds from previous sectionh e performance of some
good known infinite constellations. In Section VIl we dissuthe VNR and its connection
to the NLD 4. We conclude the paper in Sectibnl IX.

[I. DEFINITIONS
A. Notation

We adopt most of the notations of Poltyrev's paper [3]: C&t(a) denote a hypercube
in R™

N n Jpl < 2
Ch(a) 2 {x € R" s.t. Vy|ay| < 2} . (10)
Let Ball(r) denote a hypersphere IR" and radius- > 0, centered at the origin
Ball(r) £ {x € R" s.t. ||x| <1}, (11)

and let Bally, ) denote a hypersphere IR" and radius- > 0, centered ay € R”
Ball(y,7) £ {x e R" s.t. |x —y|| <r}. (12)

Let S be an IC. We denote by/(S, a) the number of points in the intersection©b(a)
and the ICS, i.e. M(S,a) £ |S(\Ch(a)|. The density ofS, denoted byy(S), or simply
~, measured in points per volume unit, is defined by

7(8S) £ lim sup M(S, a). (13)

a—00 a

The normalized log density (NLDJ is defined by
§=6(8)= %logv. (14)

It will prove useful to define the following:

Definition 1 (Expectation over points in a hypercubé&pt E,[f(s)] denote the expecta-
tion of an arbitrary functionf(s), f : S — R, wheres is drawn uniformly from the code
points that reside in the hypercuk#(a):

A 1
Ef6) = Ssma) Seg%@f(s) (15)
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Throughout the paper, an IC will be used for transmissionnédrmation through the
unconstrained AWGN channel with noise variance(per dimension). The additive noise
shall be denoted b¥. = [7, ..., Z,]*. An instantiation of the noise vector shall be denoted
by z = [21, ..., 2] 7.

For s € S, let P.(s) denote the error probability when was transmitted. When the
maximum likelihood (ML) decoder is used, the error probi&bis given by

P.(s)=Pr{s+Z ¢ W(s)}, (16)

whereW (s) is theVoronoi regionof s, i.e. the convex polytope of the points that are closer
to s than to any other point’ € S. The maximal error probability is defined by

P™(S) £ sup P,(s), a7

seS

and the average error probability is defined by

P,(S) £ limsup E,[P.(s)]. (18)
The following related quantities, define the optimal parfance limits for IC’s.
Definition 2 (Optimal Error Probability and Optimal NLD):

« Given NLD valueé and dimensiom, P.(n,d) denotes the optimal error probability
that can be obtained by any IC with NL® and a finite dimensiomn.

. Given an error probability value and dimensiom, .(n) denotes the maximal NLD
for which there exists an IC with dimensionand error probability at most.

Clearly, these two quantities are tightly connected, arydnamasymptotic bound for either
guantity gives a bound for the other. However, their asytiptnalysis (withn — co) is
different: for fixedd < 47, it is known thatP.(n, §) vanishes exponentially with. In this
paper we will refine these results. For a fixed error probighiliit is known thatd.(n) goes
to 6* whenn — oo. In this paper we will show that the gap & vanishes likeO (1/1/n),
see Sectio VI.

fn = O(gn) shall mean that there exist a constans.t. for alln > ny for someny,
|fn| < ¢+ gn. Similarly, f, < O(g,) shall mean that there existn, s.t. for alln > ny,
fn < cgn. fn > O(gn) means—f, < O(—g,). fn = ©(g,) shall mean that botlf, = O(g,)
andg, = O(f,) hold.

B. Measuring the Gap from Capacity

Suppose we are given an & with a given densityy (and NLD § = %logy), used for
information transmission over the unconstrained AWGN withise variancer®. The gap
from optimality can be quantified in several ways.

Knowing that the optimal NLD (fom — o0) is 8", we may consider the difference

AS =8 — 4, (19)

which gives the gap to capacity imts, where a zero gap means that we are working at
capacity. An equivalent alternative would be to measuredtie between the noise variance
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that is tolerable (in the capacity sense) with the given Ni@iven by%, and the actual

. . —26% . . .
noise variancer® (equal toS_—). This ratio is given by

e~ /(2me .
= 7(/7(2 ) = 207-9), (20)

For lattices, the terme=2% is equal tov*™, wherewv is the volume of a Voronoi cell of
the lattice. Therefore. was termed th&/blume-to-Noise RatiQVNR) by Forney et al.[[16]
(where it is denoted bw?(A, o%)). The VNR can be defined for general IC’s as well. It is
generally above (below capacity) and approachésat capacity. It is often expressed in
dBf, i.e. 25

- 2 .
# = 101og,, €2 =% = 8.6859A4. (21)
Note that the VNR appears under different names and scalimgse literature. Poltyrev
[3] defined the quantityi—i‘S and called it the Generalized SNR (and also denoted jt)oy
In certain cases the latter definition is beneficial, as it barviewed as the dual of the
normalized second moment (NSM), whichrat> oo approache% [17].

101og,,

An alternative way to quantify the gap from optimal perfonoa is based on the fact
that the Voronoi regions of an optimal IC (at— oo) becomes sphere-like. For example,
the sphere bound (the converse bound) is based on a sphar¢heisame volume as the
Voronoi cells of the IC (i.e. a sphere with radiug). As n grows, the Voronoi regions of
the optimal IC (that achieves capacity) becomes closer fwhare with squared radius that
is equal to the mean squared radius of the naisé, Therefore a plausible way to measure
the gap from optimality would be to measure the ratio betwbernsquared effective radius
of the IC and the expected squared noise amplitude, i.e.

2 —267,-2/n
s eV,

pE ff2 = — (22)
no no

This quantity was called “Lattice SNR” in_[15], and “Vorontm-Noise Effective Radius
Ratio” (squared) in[18]. Similarly to the VNR, this ratio also approachésat capacity, and
is also often expressed in dB. However, the two measlresaf@ad(22) are not equivalent.
For a given gap in dB, different IC densities (and NLD’s) aegivked, and only as — oo
the measures coincide (this can be seen by approximatingee AppendidXJF). In the
current paper, whenever we state a gap from capacity in dBevee to the gapl(21).

In the current paper we shall be interested in the gap to @¢gpadche forms of (19) and
(20). The finite-dimensional results in Sectlon IV are sfie¢or eachn and can be written
as a function of either the NLID or the ratio [[2R). However, the asymptotic analysis in
Sectiond V and VI depends on the selected measure. SpdyijficaSection [V we study
the behavior of the error probability with — oo where é§ is fixed. This is equivalent
to fixing the ratio [(20) (but not((22)). While the exponentishavior of the bounds on
the error probability is the same whether we fix1(20)[on (2B $ub-exponential behavior
differs. In Sectior Ml we are interested in the behavior & tfap [(19) withn — oo for
fixed error probability. Equivalent results in terms of tlaéi@ (22) can be derived using the
same too

3For Aé measured in bits we would get the familiar 6.02 dB/bit indtef 8.6859 dB/nat in[{21).
“It is interesting to note that although we choose to stickhlite gap in nats and to the rat[o120), the tefm (22) will
pop out in the asymptotic analysis in Sectioh V.
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I1l. PREVIOUS RESULTS
A. Known Bounds o.(n, d)

Here we review existing non-asymptotic bounds @rin, ), and discuss how easy are
they for evaluation and asymptotic analysis.

The following non-asymptotic achievability bound can bstitlied from Poltyrev’s paper
[3]:

Theorem 1 (Poltyrev’s achievability}or anyr > 0,
2r
P.(n,d) < en‘ann/ w" ' Pr{Z € D(r,w)}dw + Pr{||Z|| > r}, (23)
0

whereD(r, w) denotes the section of the sphere with raditisat is cut off by a hyperplane
at a distancey from the origin.

In [3] it is stated that the optimal value for (the one that minimizes the upper bound)
is given by the solution to an integral equation, and it isvalthat asn — oo, the optimal
r satisfies% — 02299 However, no explicit expression for the optimals given, so
in order to compute the bound for finite valuesrobne has to numerically optimize w.r.t.
r (in addition to the numerical integration). In order to derithe error exponent result,
Poltyrev [3] used the asymptotic (but suboptimal: /noe® 2.

The converse bound used in [3], which will be used in the cumpaper as well, is based
on the following simple fact:

Theorem 2 (Sphere boundlet W (s) be the Voronoi region of an IC point, and let
Sw (s) denote a sphere with the same volumeliags). Then the error probability’,(s) is
lower bounded by

Pu(s) > Pr{Z ¢ Sw»}, (24)

whereZ denotes the noise vector.

This simple but important bound (see, elg./[15][19]) is blage the fact that the pdf of the
noise vector has spherical symmetry and decreases witlathgst An immediate corollary
is the following bound for lattices (or more generally, ai§y With equal-volume Voronoi
cells):

P.(n,8) > P°B(n,8) 2 Pr{||Z|| > res} = /OO fr(r)dr', (25)

wherer.g is the radius of a hypersphere with the same volume as a Vbcetipand f(r)
is the pdf of the norm of the noise vector, i.e. a (normalized) distribution withn degrees
of freedom.

Note that this bound holds for any poigtin the IC, therefore it holds for the average
error probability P.(n, §) (and trivially for the maximal error probability as well)n I[3]
the argument is extended to IC’s which not necessarily obeycbnstant volume condition
in the following manner: first, it is claimed that there musise a Voronoi region with
volume that is at less than the average volumé, so the bound holds foP™*(S). In
order to apply the bound to the average error probabilityivarglC S with average error
probability ¢ is expurgated to get another € with maximalerror probability at mosge.
Applying the previous argument for the maximal error praligbof S’ gives a bound on
the average error probability &. The expurgation process, in addition to the factor of 2
in the error probability, also incurs a factor of 2 loss in thensityy. When evaluating
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the asymptotic exponential behavior of the error probgbihese factors have no meaning,
but if we are interested (as in the case in this paper) in thetbavalues for finiten, and

in the asymptotic behavior df.(n), these factors weaken the sphere bound significantly.
In Section IV we show thaf (25) holds verbatim for any finitenénsional IC, and for the
average error probability as well.

The sphere bound (25) includes a simple (but with no knowsedeform solution) 1D
integral and can be evaluated numerically. An alternatorettie numerical integration was
proposed in[15], where the integral was transformed intora sfn/2 elements to allow the
exact calculation of the bound. While the result gives aeratitive to numeric integration,
it does not shed any light on the asymptotic behavior of thendowith growingn.

B. Known Asymptotic Bounds at Fixéd(Error Exponent)

The error exponeri () for the unconstrained AWGN was defined[in (5). The nonasymp-
totic bounds in the previous subsection can lead to uppetaavet bounds on the exponent.
The asymptotic evaluation of Poltyrev's achievability bduTheoreni 1) is hard: in [3],
in order to provide a lower bound on the error exponent, a stitmal value forr is chosen
for finite n (r = \/noe=®~9). The resulting bound is the random coding exponent for
this settingE,.(§), given by

6*—5+10g§, 6§607‘|
E (0)=1 5[99 —1-2(6"-46)], 6., <6<6" (26)
0, 6>06",

whered,, = %log ﬁ Poltyrev also provided an expurgation-type argument tprave
the error exponent at low NLD values (beldy, £ §* —log2). This NLD region is outside
the focus of the current paper.

An upper bound on the error exponent is the sphere packingnexy. It is given by([3]:

E,,(6) = % 2679 1 o6~ 5)]. 27)

which is derived from the sphere bound (see [3, Appendix C]).
The upper and lower bounds on the error exponent only hinhervalue ofP.(n, d):

e B +0) < P (1 §) < (B +o1), (28)

Even when the error exponent bounds coincide (above thearNLD §.,.), the optimal
error probability P.(n, d) is known only up to an unknown sub-exponential term. In Sec-
tion[V| we present a significantly tighter asymptotic anayaind show, for example, that at
NLD aboveé.., P.(n,d) is known, asymptotically, up ta constant

V. BOUNDS FORFINITE DIMENSIONAL IC’S

In this section we analyze the optimal performance of finiteeshsional infinite constel-
lations in Gaussian noise. We describe two new achievahititinds, both based on lattices:
The first bound is based on a simple ‘typicality’ decoder, Hmasecond one based on the
ML decoder. Both bounds result in simpler expressions thatyfev’'s bound (Theoreri 1).
The first bound is simpler to derive but proves to be weak. Téwmid bound gives the
exact value of the bound as Poltyrev’s (Theotém 1), withbetrteed for 3D integration and
an additional numeric optimization, but only a single 1Degrial (which can be analyzed
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further - see Sectioh]V). As for converse bounds, we exteredvtlidity of the sphere
bound to the most general case of IC’s (not only those withakgalume Voronoi cells)
and average error probability.

A. Typicality Decoder Based Bound
Theorem 3:For anyr > 0,

P.(n,8) < PTB £ eV " 4 Pr{||Z|| > 7}, (29)
and the optimal value for is given by
r* = oy/n(l +26° — 24). (30)

Proof: Let A be a lattice that is used as an IC for transmission over thenstained
AWGN. We consider a suboptimal decoder, and therefore tinonpeance of the optimal
ML decoder can only be better. The decoder, callegpcality decoder shall operate as
follows. Suppose thak € A is sent, and the poing = A\ + z is received, where is the
additive noise. Let- be a parameter for the decoder, which will be determined late
If there is only a single point in the ball B&jt, r), then this will be the decoded word.
If there are no codewords in the ball, or more than one cod#wothe ball, an error is
declared (one of the code points is chosen at random).

Lemma 1:The average error probability of a lattice (with the typicality decoder) is
bounded by

P.(A) <Pr{Z ¢Ball(r)} + > Pr{Z e Ball(\r)nBall(r)}, (31)
AeA\{0}

whereZ denotes the noise vector.

Proof: SinceA is a lattice we can assume without loss of generality thakzéne point
was sent. We divide the error events to two cases. Firsteifnihise falls outside the ball
of radiusr (centered at the origin), then there surely will be errosedecoding since the
transmitted (0) point is outside the ball. The remainingerases are where the noiZe
is within Ball(r), and the noise falls in the typical ball of some other latpoént (that is
different than the transmitted zero point). We therefore ge

P.(A) <Pr{Z ¢Ball(r)} +PrqZeBal(r)()| |J Bal(\r)
AeA\{0}

=Pr{Z ¢Bal(r)} +Prc¢Zec | J Ball(xr)nBall(r)

AEA\{0}
<Pr{Z¢Bal(r)}+ > Pr{ZeBall()\r)nBall(r)}, (32)

AEA\{0}
where the last inequality follows from the union bound. [ |

We use the Minkowski-Hlawka theorem [14][1@]:

® The MH theorem is usually written a§{33) with aradded to the RHS that is arbitrarily small (elg.][13, Lemma 3,
p. 65], and[[14, Theorem 1, p. 200]). The versibnl (33) folldwsm a slightly improved version of the theorem due to
Siegel, often called the Minkowski-Hlawka-Siegel (MHSgtinem, se€ [14, Theorem 5, p. 205].
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Theorem 4 (MH):Let f/ : R" — R* be a nonnegative integrable function with bounded
support. Then for every > 0, there exist a latticé\ with det A = ~~! that satisfies

o)<y . FN)dA. (33)

AeA\{0}

SincePr {Z € Ball(\,r) N Ball(r)} = 0 for any A s.t. ||A|| > 2r we may apply the MH
theorem to the sum in_(82). We deduce that for any 0, there must exist a latticé with
density~, s.t.

Z Pr{Z e Ball(\,r)nBall(r)} < 7/ Pr{Z e Ball(\,r)nBall(r)} d\.  (34)
AEA\{0} "

We further examine the resulting integral:

/ Pr{Z < Ball(\,r) nBall(r)} d\

= / / fz(z)dzd\
n JBal(\,r)nBalkr)
< / / fz(z)dzd\
n JBall(\,r)
/ / fz(Z' + N)dz'd\
~ JBallr)
1dz

/E;all(r)

= V,r". (35)

Combined with[(311) we get that there exist a lattitavith density~, for which
P.(N) <AV +Pr{||Z|| > r}, (36)

wherer > 0 and~y = ¢ can be chosen arbitrarily.
The optimal value for follows from straightforward optimization of the RHS ¢f {36
we first write

1 & 9 r?
Pr{||Z| >r}:Pr{§ZZi > ;}-

i=1

We note that the sumd; > | Z? is a sum ofrn i.i.d. standard Gaussian RV’s, which is
exactly ax? random variable witln degrees of freedom. The pdf of this RV is well known,
and given by

f ( ) 2—n/2 n/2—1 _-—x/2
xr) = T (&
T T (n/2) ’

wherel'(-) is the Gamma function. Equipped with this, the RHS[ofl (36)dnees

enév Tn+/‘00 2_N/2 xn/2—le—x/2
" e T2 '
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Differentiating w.r.t.r and equating to zero gives
2r 27"/2
nd n—1
V I
ne et o2 r(n/2)

We plug in the expression fdr,, = nr( /2 and get

(2/ )n/2 1 —%:0.

n/2 o 92~ n/2 r2
ns_ T n—1 r 2/ 2\n/2-1_—5—5 _
ne"’ ———r""" — ————(r"/0") e 202 =,
50(n/2) 02T (n/2)

which simplifies to the required = o\/n(1 + 26* — 24). u

B. ML Decoder Based Bound

The second achievability bound is based on the ML decodéngusdifferent technique

than Poltyrev|([3]):
Theorem 5:For anyr > 0 and dimensiom, there exist a latticé with error probability

P,(n,8) < PMLB(n §) & ¢y, / fr(F)Fd7 + Pr{|Z] > r} (37)
0

and the optimal value for is given by
=Ty = e_‘;Vn_l/”. (38)

Before the proof, note that this specific value fogives a new interpretation to the bound:
the termPr {||Z|| > r} is exactly the sphere bound {24), and the other term can hgkio
of as a ‘redundancy’ term. Making this value small resultsightening of the gap between
the bounds.

Proof: Suppose that the zero lattice point was sent, and the notdeniez € R™. An
error event occurs (for a ML decoder) when there is a nonzsgteée pointA € A whose
Euclidean distance ta is less than the distance between the zero point and noigervec
We denote by the error event, condition on the radilsof the noise vector and get

P.(A) = Pr{€} =
= Er [Pr{€[||Z] = R}]

_ /0°° falr) Pr{E | |Z] = r}dr

< /0 fr(r) Pri&€ [ |Z|| = r}dr + Pr{[|Z]| > r*}, (39)

where the last inequality follows by upper bounding the piality by 1. It holds for any
r* > 0.
We examine the conditional error probabiliy {€ | ||z|| = r}:

Pri{€||Zll=r}=Prs |J IZ-A<|Z||lZl=r

AEA\{0}
< Y Pr{IZ- A <IZ] | 2] =r}

AEA\{0}
— Y Pr{ieBal(Z|Z]) | |Z]| =}, (40)

AEA\{0}
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where the inequality follows from the union bound. Plugginip the left term in[(3P) gives

/OT frlr) S Pri{xeBal(z,|z|) | |Z|| = r}dr

AeA\{0}

S /0 fr(r)Pr{\ € Bal(Z, |Z]) | |Z| = r} dr. (41)

AEA\{0}

Note that the last integral has a bounded support (Wit is always zero ifi| || > 2r*.
Therefore we can apply the Minkowski-Hlawka theorem as iedrem[ B and get that for
any~ > 0 there exists a latticd with density~y, whose error probability is upper bounded

by

P.(A) < fyf)\eRn/O fr(r)Pr{X € Ball(Z, ||Z||) | |Z|| = r}drdX + Pr{||Z| > r*}.

We continue with

/ / fr(r)Pr{\ € Bal(Z, |Z]) | |Z] = r} drdX
AER™ JO
— [ #at0) [ privesalz.|z]) | 2] = r} drar
0 AER™
=/ fR(T)/ E [11aegaiz.zpy | [1Z]] = 7] dAdr
0 AER™
:/ fR(T)E {/ 1{>\eBaII(Z,||Z|\)}d)\ ‘ HZH = T:| dr
0 AER™
_ / FROEZI"Va] 2] = ] dr

= Vn/ fr(r)r"dr,
0

and we obtain[(37).
To find the optimal value for (the one that minimizes the RHS &f (37)), we see that:

Pr{z] >} = [ Jal)ir @2)

Differentiating the RHS of[(37) w.r.t: in orderrto find the minimum gives
eV, fr(r)r™ — fr(r) =0, (43)
andr* = g = eV, /" immediately follows. m

C. Equivalence of the ML bound with Poltyrev’'s bound

In Theoremd B an@]5 we provided a new upper bounds on the erobalpility that
were simpler than Poltyrev’s original bound (Theoriem 1). &ample, in order to compute
Poltyrev’s bound, one has to apply 3D numerical integratéord numerically optimize w.r.t.
r. In contrast, both new bounds requires only a single integraand the optimal value
for r has a closed-form expression so no numerical optimizasaequired.
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It appears that the simplicity of the bound in Theorem 5 dostscome at a price of a
weaker bound. In fact, it proves to be equivalent to Poltgréound:

Theorem 6:Poltyrev’s bound (Theoreim 1) for the error probability, foe optimal value
of r, is equal to the ML bound from Theorelm 5:

2r
min {e"‘ann/ w" ' Pr{Z € D(r,w)}dw + Pr{||Z|| > r}}
0

r>0
—emY, / fr()pdp + Pr{||Z] > r*}, (44)
0

wherer* = rgg = e=dV, ",
In fact, we can strengthef_(44) and show that

2r r
WLV”/ w" ' Pr{Z € D(r,w)}dw = yVn/ fr(p)p™dp (45)
0 0

for anyr > 0.

Proof: Appendix[A. u
Note that proving[(45) shows that both bounds are equivategardless of the value of
Consequently, the optimal value forin Poltyrev’s bound is also found. I1nl[3] the optimal
value (denoted ther@i(n, d)) was given as the solution to an integral equation, and was
only evaluated asymptotically.

D. The Sphere Bound for Finite Dimensional Infinite Conatelhs

The sphere bound (25) applies to infinite constellation$ iked Voronoi cell volume.
Poltyrev [3] extended it to general IC’'s with the aid of arpurgationprocess, without
harming the tightness of the error exponent bound. When tmertsionn is finite, the
expurgation process incurs a non-negligible loss (a faotd in the error probability and
in the density). In this section we show that the sphere bapplieswithout any losgo
general finite dimensional IC’s and average error probabili

We first concentrate on IC’s with some mild regularity asstioms:

Definition 3 (Regular IC’s):An IC S is calledregular, if:

1) There exists a radiug > 0, s.t. for all s € S, the Voronoi celllV(s) is contained in

Ball(s, o).
2) The densityy(S) is given by lim, .., 254 (rather thanlimsup in the original
definition).

For s € S, we denote by (s) the volume of the Voronoi cell of, |IW(s)|.
Definition 4 (Average Voronoi cell volumelor a regular IGS, the average Voronoi cell
volume is defined by
v(S) £ limsup E, [v(s)]. (46)

a— 00

Lemma 2:For a regular ICS, the average volume is given by the inverse of the density:

"S) = %

Proof: Appendix[B. u

(47)
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For brevity, let SPBv) denote the probability that the noise vecibiteaves a sphere of
volumewv. With this notation, the sphere bound reads

P.(s) > SPBu(s)), (48)

and holds for any individual point € S. We also note the following:

Lemma 3: The equivalent sphere bound SRBis convex in the Voronoi cell volume.

Proof: Appendix[C.

We now show that the above equation holds for the averageneond error probability
as well.

Theorem 7:Let S be a regular (finite dimensional) IC with NLB, and letv(S) be the
average Voronoi cell volume of (so the density ofS is v = v(S)™1). Then the average
error probability ofS is lower bounded by

P.(S) > SPB(S)) = SPB(y ') = F7F(n, d). (49)
Proof: We start with the definition of the average error probabidihd get
Pe(S) = limsup Eo [P (s)]

a— 00

(;:) lim sup E,[SPB(v(s))]

a— 00

(b)
> lim sup SPBE,[v(s)])

a—o0

© SPRlim sup E,[v(s)])

= SPRu(S)). (50)
(a) follows from the sphere bound for each individual point S, (b) follows from the
Jensen inequality and the convexity of SPBLemmal3), andc) follows from the fact
that SPB-) is continuous. u
As a consequence, we get that the sphere bound holds foard@# as well, without the
need for expurgation (as inl[3]).

So far the discussion was constrained to regular IC’s oriys Excludes constellations
with infinite Voronoi regions (e.g. contains points only ialhof the space), and also
constellations in which the density oscillates with the eglizea (and the formal limity
does not exist). We now extend the proof of the converse fgri@nwithout the regularity
assumptions. The proof is based on the following reguldmgprocess:

Lemma 4 (Regularization)Let S be an IC with densityy and average error probability
P.(S) = . Then for any¢ > 0 there exists aegular IC S’ with densityy’ > ~v/(1 + &),
and average error probabilith.(S') = ¢’ < (1 + ).

Proof: Appendix[D. u

Theorem 8 (Sphere Bound for Finite Dimensional IC’Egt S be a finite dimensional
IC with density~y. Then the average error probability §fis lower bounded by

P.(8) > SPBy™ ') = P?%(n, ) (51)

Proof: Let ¢ > 0. By the regularization lemma (Lemrha 4) there exists a regdas’
with ' > ~v/(1 +¢), and P.(S") < P.(S)(1 + &). We apply Theorer]7 t&’ and get that

P.(S)(1+¢€) > P.(S') = SPB(Y™') > SPR(L + &)y, (52)
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Fig. 2. Numerical evaluation of the bounds fdr= —1.5nat with ¢ = 1 (0.704db from capacity). From bottom to
top: Solid - the sphere bound (Theor€in 2). Gray - the ML bourtte¢ren{b). Dashed - Poltyrev’s bound (Theofém 1).
Dot-dashed - the typicality-based achievability bounde@ienm3B).

or
PAS) = T SPR(1+ 677 53

for all £ > 0. Since SPB') is continuous, we may take the lingt— 0 and get to[(51).m

E. Numerical Comparison

Here we numerically compare the bounds in this section wihyRev's achievability
bound (Theorerh]1). As shown in the previous subsection, thiedis in Theorems 1 and 5
are equivalent. However, as discussed following the stat¢raf Theoreni]l above, inl[3]
the suboptimal value for is used.

We therefore refer to the achievability bound in Theofém 1 Tbeorem[5) withr =
vnoed ~% as ‘Poltyrev’s bound’. The results are shown in Figlies 2[@nthe exponential
behavior of the bounds (the asymptotic slope of the curveshénlog-scale graph) is
clearly seen in the figures: at NLD abo¥g., the sphere bound and the ML and Poltyrev’s
achievability bounds have the same exponent, while for Nidlbw §.. the exponent of
the sphere bound is better. In both cases the typicality thénas a weaker exponent. These
observations are corroborated analytically in Sedfion \owe

V. ANALYSIS AND ASYMPTOTICS ATFIXED NLD ¢

In this section we analyze the bounds presented in the pre\section with two goals
in mind:
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'~ MLB \with 7 — 58
~ P, with » = \/noe
0.1

0.001%

Error probability

40

Dimension r

Fig. 3.  Numerical evaluation of the bounds #®r= —2nat with o2 = 1 (5.05db from capacity). From bottom to top:
Solid - the sphere bound (Theoréin 2). Gray - the ML-basecesahility bound (Theoreml5). Dashed - Poltyrev's bound
(Theoreni ). Dot-dashed - the typicality-based achieigldlound (Theorenil3).

1) To derive tight analytical bounds (that require no inédigmn) that allow easy evaluation
of the bounds, both upper and lower.

2) To analyze the bounds asymptotically (for fix®&dand refine the error exponent results
for the setting.

In V-Al we present the refined analysis of the sphere bound.l8Athe sphere bound
P58 will present the same asymptotic form for adiythe ML boundP 5 has a different
behavior above and below,,. In we focus on the ML bound abow&... The tight
results fromV-A and_V-B reveal that (abovk,) the optimal error probability®,(n, §) is
known asymptotically up to a constant. This is discussdd-f@. Vh [V-D we focus on the
ML bound belowd..., and in[V-E we consider the special casejof d.... In[V-H we study
the asymptotics of the typicality bound’ (n, §) and in[\-G we analyze Poltyrev’s bound,
i.e. the ML bound withr set tor = \/noe? ~9 instead ofr.g.

The fact that the ML bound behaves differently above andvbe&lg can be explained
by the following. Consider the first term in the ML bound?V,, fo’”e“ fr(r)r"dr. Loosely
speaking, the value of this integral is determined (for éary by the value of the integrand
with the most dominant exponent. Whén> .., the dominating value for the integral is
atr = r.g. FOrd < 4., the dominating value is approximately at= v/2no?. Note that
this value does not depend @i so the dependence i comes from the termna™® alone,
and the exponential behavior of the bound is of a straigle. IBince we are interested in
more than merely the exponential behavior of the bound, veenusre refined machinery
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in order to analyze the bounds.

Poltyrev [3] used an expurgation technique in order to inaprthe error exponent for
lower NLD values (below., = 6" —log 2). The refined tools used here can also be applied
to the expurgation bound in order to analyze its sub-expiaildsehavior. However, in this
region the ratio between the upper and lower bounds growsrexgially, and therefore the
sub-exponential analysis of the expurgation bound is té€ lihterest and is not included in
this paper.

A. Analysis of the Sphere Bound

The sphere bound (Theordr 2) is a simple bound based on tmeegrgoof the coding
problem. However, the resulting expression, given by aegral that has no elementary
form, is generally hard to evaluate. There are several agpes for evaluating this bound:

« Numeric integration is only possible for small - moderatéuga of n. Moreover, the
numeric evaluation does not provide any hints about the pgytoal behavior of the
bound.

. Tarokh et al.[[15] were able to represent the integral in thenid as a sum of/2
elements. This result indeed helps in numerically evahgathe bound, but does not
help in understanding its asymptotics.

« Poltyrev [3] used large-deviation techniques to derivesiiieere packing error exponent,
le.

1 1 .
lim ——log P.(n,d) < E,,(6) = 3 (2070 — 1 —2(6" — )] (54)
n—o00 n
The error exponent, as its name suggests, only hints on fhenextial behavior of the
bound, but does not aid in evaluating the bound itself or imenrecise asymptotics.
Here we derive non-asymptotic, analytical bounds basedhensphere bound. These
bounds allow easy evaluation of the bound, and give rise tempecise asymptotic analysis
for the error probability (wheré is fixed).
2

Theorem 9:Let r* £ ryg = e 9V, /™" and p* £ Lot

no?"

Then for any NLDé < §* and for any dimension > 2, the sphere boun&®°2(n, §) is
lower bounded by

* n ok 2 2
PSP(n,8) > "0 Denemiet T [T (1) (55)
n —_—
6n(5*—5)6n/26—%p* 1
= pr—142 1+71-2)° (56)

upper bounded by

en(&*—&) en/2€—%p*

P?(n,8) < o (57)
and for fixedd, given asymptotically by
(mr)‘%ew**a) log®n
SB _ —nEsp(6)
P>®(n,d) =e EGE S <1+O< . )) (58)

Some notes regarding the above results:
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« Eq. (55) provides a lower bound in terms of tQefunction, and[(56) gives a slightly
looser bound, but is based on elementary functions only.

« The upper bound (57) on the sphere bound has no direct me@niegns of bounding
the error probabilityP,(n, d) (since the sphere bound is a lower bound). However, it
used for evaluating the sphere bound itself (i.e. to def®®)( and it will prove useful
in upper boundingP,(n, ) in TheorenID below.

« A bound of the type[(57), i.e. an upper bound on the probgltitiat the noise leaves
a sphere, can be derived using the Chernoff bound as was dprieolbyrev [3,
Appendix B]. However, while Poltyrev’s technique indeedas the correct exponential
behavior, it falls short of attaining the sub-exponentiints, and thereford (57) is
tighter. Moreover,[(57) leads to the exact precise asynust¢b8).

« (B8) gives an asymptotic bound that is significantly tightem the error exponent term
alone. The asymptotic forni (b8) applies tal(5%),1(56) dnd @& well.

« Note thatp* is a measure that can also quantify the gap from capacitylld&e It is
an alternative toAé = 6* — § (or to . = €*2%). The measures are not equivalent, but
asn — oo we havep* = ¢%% =9 4 o(1), see[(6b) and (66) below.

Proof: We write the sphere bound explicitly:

PP (n,8) = Pr{||Z| > r*}

[e.e]

2 r*/o

—2.n/2 00
= M / pEte " dp. (59)
I (5) p
In order to evaluate the integral in_(59) we require the fellg lemma.
Lemma 5:Letn > 2 andz > 1— 2. Then the integraf ™ p2 ~'e~"*/2dp can be bounded
from above by

*

o Qrse s
n_q —np/2d < - - @ 60
/x pr e p_n(x—1+%) (60)
and from below by
o 2
/ p%—le—"p/zdp > 2r2¢7 2 exp T— t Q(T) (61)
i 2 n— 2
Qx%e_% 1
62
_n(x—1+%)(1+T‘2)’ 2
2r2e s 1
S N 63
_n(x_lJr%)( T2>7 (63)

n(:v—1+%)

whereY £ .
2(n—2)
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Proof: Appendix(E. u
We continue the proof of the theoreni: [55) follows by plugpi@®1) into [59) with
x = p*. It can be shown thas* > 1 for all § < " so the conditionr > 1 — % is met. [56)
follows similarly using [[62) and the definition @&. The upper bound _(57) follows using
(60).

To derive [58) we first note the following asymptotic results

/2 ore\"? 1 1
v, = _ o(=)], 64
np(n) ( n ) Vnm (1 " (n)> ©4

_9 —2/n
P n‘; = ) () (1 e (5 )) %)
_ o2(67-9) (1 4 % log(nm) + O (lo;g;n)) , (66)
G o B < <1°g”)) -

T = ) =\/3 (e 1) 1+0 - =0(vn). (67)

For (64) see AppendiklFL(65) follows frorh (64) and the defimitof *. (66) follows by
writing (n)!/" = ex'°s(™) and the Taylor approximation_(67) follows directly frofelj6
We evaluate the term 27" in (G8) and [BV):

n _x * ]. 1 2
e 2" =exp [—gew —9) (1 + —log(nm) + O ( ngn)>}
n n

n 2(5% 1 g log®
— e300 exp {—562(5 —9) log(nm) + O ( 8 n)]

n
* 1 2(6*%— 2
= 73 ()Y (1 +0 (bi ”)) . (68)
Plugging [66), [(6]7) and (68) intg_(56) and [57), along witke tefinition ofE,,(d), leads
to the desired[(88). [ |

In Fig.[4 we demonstrate the tightness of the bounds andsgrexdymptotics of Theo-
rem[9. In the figure the sphere bound is presented with itsdsand approximations. The
lower bound([(5b) is the tightest lower bound (but is basedhennion-analytia) function).
The analytic lower bound (56) is slightly looser than|(55)t s tight enough in order
to derive the precise asymptotic forin {58). The upper bolti®) 6f the sphere bound is
also tight. The error exponent itself (without the sub-exgdial terms) is clearly way off,
compared to the precise asymptotic fofm](58).

B. Analysis of the ML Bound Above,

In order to derive the random coding expondit(é), Poltyrev’s achievability bound
(Theorent1l) was evaluated asymptotically by setting a stitnap value \/noe=®" 9 for
the parameter. While setting this value still gives the correct exponahtiehavior of the
bound, a more precise analysis (in the current and followingsections) using the optimal
value forr as in Theoreml5 gives tighter analytical and asymptoticltgsu
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Fig. 4. Numerical evaluation of the sphere bound and its suand approximation in Theorelth 9 vs the dimension
n. Hered = —1.5nat ando? = 1 (0.704db from capacity). The tight bounds](55).1(56) dnd) (Bad to the asymptotic
form (&8). The error exponent term alone is evidently wayagffnpared to[{58).

Theorem 10:Let r* £ rog = =9V, /" and p* 2 % Then for any NLDé§ and for any
dimensionn > 2 wherel — 2 < p* < 2 — 2, the ML boundP~5(n, §) is upper bounded
by

en(é*—é) en/26—%p*

Z=p=3)(r=1+3)

PMEB (. §) < (69)

lower bounded by

2
PMLB (5, §) > n0'~Den/2e=ns /2 [e“ﬂ/ 5@ + T [T (1)
P n—2
1 1

: : 1 1
S (" 8) n/2 "2 . .
=c 0 P R T e g R e e
(71)

(70)

and foré.. < d < ", given asymptotically by
—nE,(8) _1,2(6%-8) 2
MLB __ ¢ (nmr)~> log™n
B (n,0) = (2= 209 (2079 _ 1) (1 +0 ( n )) : (72)

Some notes regarding the above results:
. For largen, the conditionp* < 2 — 2 translates to the fact tha., < 4. p* > 1— 2
holds for alld < 6*. The case ob < §" is addressed later on in the current section.
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« The lower boundd (70) and (71) have no direct meaning in tefb®unding the error
probability P.(n, §) (since they lower bound an upper bound). However, they afius
for evaluating the achievability bound itself (i.e. to deri(72)).

« ([72) gives an asymptotic bound that is significantly tighttesin the error exponent
term alone. It holds above th&, only, where belowd.. and exactly a¥.. we have
Theorem$ 11 and_12 below. The asymptotic forml (72) applie®®, (70) and[(711)
as well.

Proof: The proof relies on a precise analysis of the ML bound:

"V, /T fr(r)r™dr + Pr{||Z| > r*}. (73)
0

The second term is exactly the sphere bound, which allowsusiage of the analysis of
Theorem . We therefore proceed with analyzing the first term

e"‘sVn/ fR(r)r’”‘alr:e”‘sVna"/cr Fn(y)p"dy
0 0

r*

21=3 %
— 6n5VnO_n / 6—y2/2y2n—1dy

(5] Jo
k2
275 [oT
:e”‘sVna"—: / e 21t
I'[5] Jo
N (6+6%)1,2.n/2 2 ’ 2 n—1
= 56”( )22 ”n”/ e2 " Ldp (74)
0

We need the following lemma:
Lemma 6:Let 0 < z < 2 — 2. Then the integral[;" e="*/2p"~'dp is upper bounded by

T 2™ —nx/2 o 1z
n/“ef““”p"—ldprs S (1-—6 (- 2>), (75)
0 n (2 —x — 5)
and is lower bounded by
v 2
/ 6—np/2pn—1dp > xne—nm/2e\112/2 _WQ(\I]) (76)
2 e /2 1

> . 77
Y R (77
2
where U £ mz;\/:;r")
Proof: Appendix(E. u
To prove the upper bound (69) we usel(75) with- p* to bound [74):

T* p*
e"‘sVn/ fr(r)rtdr = ge"(ﬁ‘s*)er"/zo%n"/ e "2 p"dp (78)
0 0
. *1 —%P*
< IVon(s+s W 2en/2 g2 2p™"e i (79)
2 TIERVE
n(8*—8) n/2,~5p"
_ e e"“e . (80)

2—p*—%
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We combine the above with the upper bound (57) on the sphamdoand get
(6" —8) gn/2,= 50" on(6°—8) /2~ 2p"

+
2—p*—% p*—1+%

enévn/ fr(r)yrmdr + Pr{||Z| > r*} < = . (81)
0
which immediately leads td (69). )
In order to attain the lower bounid{70) we usel(76) with p* and get that®V,, [ fr(r)r"dr
is lower bounded by

ﬁen(5+5*)vn26n/20.2nnn . p*ne—np*/Ze\I/2/2 —Q(‘I’)
2 np*

_ en(é*—é)en/2e—np*/2 . 6\112/2 n—ﬂ;Q<\P)

Eq. (70) follows by using the lower bound (55) on the spherendo The analytic bound
(Z71) follows from [77).

The asymptotic form[(72) follows by the fact thét = ©(,/n), and by plugging[(66)
and [67) into the analytical bounds {69) and](71). [ |

In Fig.[8 we demonstrate the tightness of the bounds andsgredymptotics in Theo-
rem[10. In the figure the ML bound is presented with its bourmis @pproximations. The
image is similar to the Fid.l4, referring to the sphere bourfte lower bound[(70) is the
tightest lower bound (but is based on the non-analytitinction). The analytic lower bound
(Z7) is slightly looser thari_(70), but is tight enough in artiederive the precise asymptotic
form (72). The upper bound (69) of the sphere bound is aldu.tithe error exponent itself
(without the sub-exponential terms) is clearly way off, gared to the precise asymptotic

form (72).

C. Tightness of the Bounds Abo¥g

Corollary 1: Foré.. < d < & the ratio between the upper and lower boundspm, §)
converges to a constant, i.e.

PMLB(n_ §) 1 logn
g = : 2
s~ a0 () 2

Proof: The proof follows from Theorenis 9 and|10. Note that the rezisuiilghter than
the ratio of the asymptotic form§ (68) arfd(72) (i@(*%) and notO(*%-2)) since the

term that contributes thivg® n term ise— 2" which is common for both upper and lower
bounds. -

D. The ML Bound Belovd..,

Here we provide the asymptotic behavior of the ML bound at Nidluesbelowé..,.
Theorem 11:For anyé < 4., the ML bound can be approximated by

—nE,(d)

V2mn

Proof: We start as in the proof of Theordm 5 to have

PMEE(n, §) =

(1+0(2)). (83)

*

r* p
e"‘sVn/ fr(r)r™dr = ge"‘szJ"(%r)_%n"/ eP2pnLdp, (84)
0 0



INGBER ET AL.: FINITE DIMENSIONAL INFINITE CONSTELLATIONS

T~—g

T
N ~
. S

~

-~

~

~
~
S

S~

-~

25

S~

~——. ML bound PMLE

S,

0.100F ¢

0.050

Error probability

Lower bound [(711)

0.010H

0.005-

0.001 . . . . I . . . . I . . . . I . . . . I
100 200 300

50C

Dimension r

Fig. 5. Numerical evaluation of the ML bound and its boundd approximation in Theorem L0 vs the dimension
Hered = —1.5nat (0.704db from capacity). The tight bounds](69).1(70) dnd (@ad to the asymptotic fornl (¥2). The
error exponent term alone is evidently way off compared @).(7

We continue by approximating the integral as follows:
Lemma 7:Let = > 2. Then the integralf,’ e—"*/2p"~'dp can be approximated by

/ 6—n0/2pn—1dp: /2%6—71271 (1_‘_0(%))
0

Proof: The proof relies on the fact that the integrand is maximizetha interior of
the interval[0, z]. Note that the result does not dependaon
We first rewrite the integral to the form

x 1 x
/ _e—n(p/2—10gp)dp — / g(p)e‘”G(p)dp,
o P 0

whereg(p) % andG(p) = p/2 — log p.
Whenn grows, the asymptotical behavior of the integral is donedaby the value of
the integrand ap = 2 (which minimizesG(p)). This is formalized by Laplace’s method of

integration (see, e.g. [20, Sec. 3.3]):

(85)

(86)

A

2T

/0 g(p)e " dp = g(p)e 9 NI (1+0(3)
Op2 1P=p
= 30 [ (0 (1)),

4
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Fig. 6. Numerical evaluation of the ML bound and its appraadion in Theoreni 11 vs the dimensien Here § =
—1.8nat (3.31db from capacity). The precise asymptotic fofml (833lésrly tighter than the error exponent only.

which leads to[(85). [ |
Before we apply the result of the lemma ta](84), we note thagnvelerd is below the
critical 8., p* > €979 = 2¢29=9) ~ 9 for all n. Therefore for alln we have

J

We apply Lemmal7 to both sides of the equation and conclude tha

o 2T
/ el /;e_”Q" (1+0(1)). (88)
0

The proof of the theorem is completed using the approximaf@al) for V.
It should be noted that the sphere bound part of the achigyabound vanishes with a
stronger exponentH,(4)), and therefore does not contribute to the asymptotic value
In Fig.[@ we demonstrate the tightness of the precise asytioptim Theorenmi _I1. Here
too the precise asymptotic form is significantly tighterrtithe error exponent only.

902(8cr—8) o

e_np/gpn_ldp < / e—np/an—ldp < / e—ﬂp/an—ldp. (87)
0 0

E. The ML Bound ab.,

In previous subsections we provided asymptotic forms ferupper bound orP,.(n, §),
for 6 > 6. and ford < d.. (Theoremd I0 anf 11 respectively). Unfortunately, neither
theorem holds fo®,, exactly. We now analyze the upper bounddgt, and show that its
asymptotic form is different at this point. As a consequeratehe critical NLD, the ratio
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Fig. 7. Numerical evaluation of the ML bound &t= §.. (3.01db from capacity) and its approximations in Theokem 12
vs the dimensiom. The asymptotic form[{89) is tighter than the simpl[er] (909ttBforms approximate the true value of
the ML bound better than the error exponent term alone.

between the upper and lower bounds Brin, d) is of the order of\/n (this ratio above
4., IS a constant, and below.,. the ratio increases exponentially since the error expsnent
are different).

Theorem 12:At 6 = §.,, the ML bound is given asymptotically by

B 1 T log(nme? og?n
P8 = 0 |\ [ PO (10 () @9

_ o—Er(der) \/;T_n (1 +0 <10%>) (90)

Proof: Appendix[G. u
In Fig.[@ we demonstrate the tightness of the precise asytioptof Theorem_12.

F. Asymptotic Analysis of the Typicality Bound

The typicality upper bound o®.(n,d) (Theorem[B) is typically weaker than the ML-
based bound (Theorelm 5). In fact, it admits a weaker exp@idrghavior than the random
coding exponenkE,.(§). Define thetypicality exponeniE,(d) as

E,(5) 26" — 6 — %log(l +2(8" — 8)). (91)
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-1.7 -1.6 -1.5 o*

Exponentinaty

The normalized log density

Fig. 8. Error exponents for the unconstrained AWGN charifieé typicality error exponenE,(J) (dot-dashed) vs. the
random coding exponer®,.(§) (dotted) and the sphere packiii, () (solid). The noise variance? is set to 1.

Theorem 13:For anyéd < 6, the typicality upper bound is given asymptotically by

“rE@) 14 2(8" - 9) 1
TB _¢ . il
P"B(n, 8) = = 3o 3 (1 +0 (n)) (92)
Proof: Appendix[H. u

The error exponenE,(d) is illustrated in Figurél8. As seen in the figuig,(d) is lower
thanE,.(4) for all 4.

G. Asymptotic Analysis dPMLE with Poltyrev'sr = \/noed —9

In Poltyrev’s proof of the random coding exponent [3], thécotimal value forr was
used, cf. Sectiof IV above. Instead of the optimak r.s = eV he choser =
vnoed =%, In Figures[2 and]3 above we demonstrated how this subopthwite of r
affects the ML bound at finitex. In the figures, it is shown that fa¥ = —1.5nat (above
d.,) the loss is more significant than fér = —2nat (below é.,). Here we utilize the
techniques used in the current section in order to provigenpstic analysis of the ML
bound with the suboptimal, and by that explain this phenomenon.

Theorem 14:The ML boundPMLB, with - = /noe® 9, denotedP 5 (n, §), is given
asymptotically as follows:
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Foré., <6 < 6"

- 1 1
MLB _ _—nE.(8) 1
P (n,0) =e nm(2 — 267 -9)) + V/nm(e2(07=9) — 1)] (1+0()) ®3)
1
— ,—nE.(9) 1
N (e (1+0 (%)) 54
Foréd < é..: 1
PMLB(py §) = "B (9) 1+0(1)). 95
AL (1, 8) = B0 (140 (1)) (%5)
Foré =6,
. 1 1
pPMLB _ —nE;(8cr) 14— 1
e (na(scr) € \/ﬁ + \/g ( +O(n)) (96)
Notes:

« Foré > 4., PMB(n, §) is indeed asymptotically worse tha'/~? with the optimal
r = rqg (37), see[(72). Specifically, the choice of= \/noe’ ~ only balances the
exponents of the two expressions of the bound (37), whileingathe sub-exponential
terms unbalanced - seE(Q?). The optimal seleatienr .z balances the sub-exponential
terms to the order of—2¢*” ~*, see Theoref 10. This in fact quantifies the asymptotic
gap between the bounds, as seen in the[Fig. 2.

. Foré < 4., the selection of the suboptimalhas no asymptotic effect, as seen by
comparing[(9b) and (83). This corroborates the numericdirfips presented in Fig] 3.

« Foré = 6., the asymptotic form of the bound is changes by a constantace{96)
and [89)][(9D)), and the correction term in the approxinmatighter.

Proof: Appendix[l. [

VI. ASYMPTOTICS FORFIXED ERROR PROBABILITY

In the previous section we were interested in the asympbaiavior of P.(n, d) when
the NLD ¢ is fixed. We now turn to look at a related scenario where ther gnrobability e
is fixed, and we are interested in the asymptotic behaviohefdptimal achievable NLD,
denotedd.(n), with n — oo. This setting parallels the channel dispersion type result
[7][6][21, Problem 2.1.24], and is strongly related to thepersion of the power constrained
AWGN channel [[8][6].

A. The Dispersion of Infinite Constellations

Let e > 0 denote a fixed error probability value. Clearly, for anyd.(n) approaches the
optimal NLD 6" asn — oo. Here we study the asymptotic behavior of this convergence.
Theorem 15:For a fixed error probability, the optimal NLDé.(n) is given, for large

enoughn, by

d.(n)=408" — %Q‘l(s) + % logn + O (%) : (97)

The proof is based on an asymptotic analysis of the finiteedsional bounds derived
in Section[1V. Specifically, the converse bound (an uppemidoin (97)) is based on the
sphere bound_{4). The achievability part (a lower bound if)(& based on the ML bound
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Fig. 9. Bounds and approximations of the optimal NBD(n) for error probabilitye = 0.01. Here the noise variance
5,
o” is set tol.

(37). The weaker typicality bound is also useful for denyia result of the type (97), but
in a slightly weaker form - the typicality bound can only letad

) 1 1
d.(n) > 6" — 7.0 1(5)+O(;). (98)

In Fig.[@ we show the bounds od.(n) that are derived from the finite dimensional
bounds onP,(n,d) given in Sec[1V, along with the asymptotic forin {97), dedvia this
section, which tightly approximatek (n). In addition, the term(98) is also depicted, which
only loosely approximated.(n). The chosen error probability for the figureds= 0.01.

Before proving the theorem, let us discuss the result. Bysthmlarity of Equations[(1)
and [9T) we can isolate the const%nand identify it as the dispersion of the unconstrained
AWGN setting. This fact can be intuitively explained fronvegal directions.

One interesting property of the channel dispersion thed@ris the following connection
to the error exponent. Under some mild regularity assumpfithe error exponent can be
approximated near the capacity by

(C—-R)?
2V

whereV is the channel dispersion. The fact that the error exporeambe approximated by

a parabola with second derivati\(l/ewas already known to Shannon (see [6, Fig. 18]). This

E(R) = (99)
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property holds for DMC’s and for the power constrained AWGiduenel and is conjectured
to hold in more general cases. Note, however, that while @rallic behavior of the

exponent hints that the gap to the capacity should behage aﬁ;) the dispersion theorem

cannot be derived directly from the error exponent theower&f the error probability was
given bye "E() exactly, [1) cannot be deduced from](99) (which holds onlyhim Taylor
approximation sense).

Analogously to [(98), we examine the error exponent for theoustrained Gaussian
setting. For NLD values above the critical NL®.. (but belowd™), the error exponent is
given by [3]:

6—25

E(9) = +0+ L log 270, (100)
4dmrec? 2

By straightforward differentiation we get that the secoredivhtive (w.r.t.d) of E(4,0?)

at 6 = 6" is given by 2, so according to[(99), it is expected that the dispersionttier
unconstrained AWGN channel will b; This agrees with our resulf (87) and its similarity
to (I), and extends the correctness of the conjecfure (etanconstrained AWGN setting
as well. It should be noted, however, that our result pravidere than just proving the
conjecture: there also exist examples where the error expgos well defined (with second
derivative), but a connection of the type (99) can only beiegd asymptotically with
e — 0 (see, e.g.[22]). Our resuli (B7) holds for any finiteand also gives the exagtlogn
term in the expansion.

Another indication that the dispersion for the unconsedisetting should bé comes
from the connections to the power constrained AWGN. While d:lapacity% log(1 + P),
where P denotes the channel SNR, is clearly unbounded withthe form of the error
exponent curve does have a nontrivial limit @s— oo. In [2] it was noticed that this limit
is the error exponent of the unconstrained AWGN channel é&iones termed the ‘Poltyrev
exponent’), where the distance to the capacity is replageth& NLD distance tay*. By
this analogy we examine the dispersion of the power com&daAWGN channel at high
SNR. In [6] the dispersion was found, given (iat> per channel use) by
P(P+2)
2(P+1)%

This term already appeared in Shannon’s 1959 paper on the MW/iEr exponent [5],
where its inverse is exactly the second derivative of therekponent at the capacity (i.e.
(@9) holds for the AWGN channel). It is therefore no surprikat by takingP — oo,

we get the desired value (éf, thus completing the analogy between the power constrained
AWGN and its unconstrained version. This convergence itedast, and is tight for SNR

as low as10dB (see Fig[_10).

Vawen = (101)

B. A Key Lemma

In order to prove Theorem 115 we need the following lemma diggrthe norm of a
Gaussian vector.

Lemma 8:Let Z = [Zy,...,Z,|" be a vector ofn zero-mean, independent Gaussian
random variables, each with means. Let » > 0 be a given arbitrary radius. Then the
following holds for any dimensiomn:

Pr{)Z| >r}—@(

M)‘ < 67 (102)

02y/2n %7
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Fig. 10. The power-constrained AWGN dispersibn {101) ¢(§olis. the unconstrained dispersion (dashed)

where
T=E

X2
~ 3.0785, (103)
V2
for a Standard Gaussian RY.
Proof: The proof relies on the convergence of a sum of independedbra variables
to a Gaussian random variable, i.e. the central limit thmord/e first note that

Pr{||Z|| >r}:Pr{zn:Zi2>r2}. (104)

i=1

LetY; = z;—;; It is easy to verify thatE[Y;] = 0 and thatVAR[Y;] = 1. Let S, =

ﬁ > i, Y:. Note thatS, also has zero mean and unit variance. It follows that

- " 72 —g2 2 _po?
Pr Z2>r2% =Pr L >
(So=r) oS =)

i=1

- r? — no?
=Pr Y, > ————
P {S >72_”w2} (105)
= Pr no ———— ¢ .
o2y/2n
S, Is a normalized sum of i.i.d. variables, and by the centraitltheorem converges to a
standard Gaussian random variables. The Berry-Esseerethdeee Appendix J) quantifies
the rate of convergence in the cumulative distribution fiomcsense. In the specific case
discussed in the lemma we get



INGBER ET AL.: FINITE DIMENSIONAL INFINITE CONSTELLATIONS 33
6T

r? — no? r? — no?
PriS,>——"-Q|——|| < —
{ 02y/2n } © { 02\/2n } Vn
whereT = E|[|Y;|%]. Note thatT" is independent of2, finite, and can be evaluated numer-
ically to about3.0785. [ |

(106)

C. Proof of Theoreri 15

Proof of Direct part:
Let ¢ denote the required error probability. We shall prove thisterce of an IC (more
specifically, a lattice) with error probability at mastand NLD satisfying[(9]7).
It is instructive to first prove a slightly weaker version &7j based on the typicality
decoder (Theoreml 3). While easier to derive, this will shbe éxistence of lattices with

NLD 6 = 6" —/5-Q () + O (). Proving the stronger result{97) is more technical and

2n

will proven afterwards using the ML achievability bound €tiem(b).

Recall the achievability bound in Theorémn 3: for any 0 there exist lattices with NLD
6 and error probabilityP, that is upper bounded by

P, <AVr" + Pr{||Z| > r}. (107)
We determiner s.t. Pr(||Z]| > r) = ¢ [1 — ﬁ} and~y s.t. yV,r" = = This way it is
assured that the error probability is not greater than thairede [1 — in +ﬁ =¢e. Now

definea,, s.t.r?> = no?(1 + a,,) (note thatr implicitly depends om as well).
Lemma 9:«,,, defined above, is given by

ap = \/gQ‘l(e) + O (%) : (108)

Proof: By construction; is chosen s.t.

2 2\ o 1
Pr(||Z]|* >r") =¢ {1 —\/ﬁ] ) (109)
By the definition ofa,,,
2 2 _ _ 1
Pr(||Z]|* > no*(1 +ay)) =« [1 —\/ﬁ ) (110)

By Lemma[3,

Pr(|Z|* > no*(1 + o)) =

(111)

Combined with [(11I0), we get

i Ha( i) <o) w12
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£+ 0 <%) =Q (\/gozn) . (113)

Taking Q~'(-) of both sides, we get

i (0(5)

By the Taylor approximation of)~'(s + z) aroundz = 0, we get

or

n 1 1
Jaam=a"@+0 () (115)
or
a, = %Q‘l () +0O <%) , (116)
as required. [ |

So far, we have shown the existence of a latticevith error probability at most. The
NLD is given by

1
6 = —log~
n
= l lo °
n & Var™y/n
1 logn 1
=——logV, —logr — + —loge
n 2n n
1 1 logn 1
=——1 — =1 2 — —loge.
—log Vo 5 og[no*(1 + ay,)] 5, T loge
V,, can be approximated by (see Appendix F) by
1 1 2 1 1
—1ogvn=—1ogﬁ——1ogn+o(—). (117)
n 2 n 2n n
We therefore have
1 9 1 1
0 = —=log(2mec®) — = log(l + a,) + O | — (118)
2 2 n
@ ¢ 1 1
1 1
O~ Za,+0 (—) (120)
2 n
c 1 1
Ug -5 @0 (1), (121)
2n n

where(a) follows from the definition of6*, (b) follows from the Taylor approximation for
log(1 + «,,) arounda,, = 0 and from the fact thatv, = O(1//n), and(c) follows from
Lemmal9. This completes the achievability part based onythiedlity decoder.
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In order to prove the stronger achievability result that @%8) we follow the same steps
with the ML achievability bound. By Theorefld 5 we get that faiya: > 0 there exist a
lattice with densityy and error probability upper bounded by

P.<AV, / fr(F)Fd7 + Pr{|Z] > r} . (122)

B

Now determiner s.t. Pr(||Z|| > r) = ¢ [1 — ﬁ} andy s.t. /V, [, fr(F)rdr = <.
Again, it is assured that the error probability is upper ed bye. Define a,, s.t. r?
no?(1+ ay).

The resulting density is given by

€
V= T N (123)
V/nV, fo fr(F)rmdr
and the NLD by
1
6 = —log~y
n
1 1 T o
= —loge — —log {\/ﬁVn/ fR(r)r"dr}
n n 0
1 1 1 1 r
= —loge — o -logn — —logV;, — —log / FrlF)Fdr
n 2n n n 0
1 2 1 n(1+an) 1
= —5log = — ~log / fr(F)F"dr + O (—) : (124)
2 n n 0 n

where the last equality follows from the approximation (Liar V.

We repeat the derivation as in E§.(74) wheteis replaced by = /no?(1 + «,,) and
have

\/m -n/2,.n 1+an _

/ fr(F)F dF = 2 i / e i
0 Lzl Jo

- Oﬂ2—n/2nn 2(1 + an)ne—n(l—l—an)/Z

T n(lman-3)

n2—n/2nn 2em log(1+an)e—n(1+an)/2

I a(l-an-2)

=0
2 n

where the inequality follows from Lemma 6. Therefore tharten (124) can be bounded
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w
(o))

by
1 V/no?(1+an)
- log/o fr(F)F"dr
§llogUZ—%log2+logn+log(1—l—an)—%(1+an)—|—llog L L

2 no gl 5] (1—an = 3)
:%logaz—%log2+logn+log(1+ozn)—%(1+an)+%logﬁm+0(%)

2t 12

:%logcﬁ—%10g2+1ogn+log(1+an)—%(1+an)—%(%1og(7m)+%log2—"e)+O(%)
:%log02+%logn+log(1+an)—%an—ﬁlogn—i—()(%)
@%bgaz—l—%lognjt%an—%lognjLO(%)

(a) follows from the Taylor expansion abg(1l + &) at &€ = 0 and from the fact that
a, = O(ﬁ). Plugging back to[{124) combined with Lemiia 9 completes tlefpof the
direct part.

Proof of Converse Part:

Lete >0, and let{S,}, . be a series of IC’s, where for eaeh F.(S,) < . Our goal
is to upper bound the NLB,, of S,, for growing n.

By the sphere bound we have

e = Pe(Sy) = Pr{[|Z|| > r"}, (125)
wherer* = e=%V,; /" By Lemma[3,
r*2 — no? 61
> pef|Z) > > ) 5 126
cxprflzl >y 2 Q (T A0 ) - (126)

whereT' is a constant. It follows by algebraic manipulations that

1 2 67 1 1
< - ‘0! — )] -= —Z 2).
o, < 5 log <1 + \/;Q (z—: + ﬁ)) - log V,, 5 log(no®) (127)

By the Taylor approximation ofog(1 + z) atz = 0 and of Q~'(y) aty = ¢, and by the
approximation[(117) foi/,,

1 1 2re 1

1 1
< — - -1 - - - - 2 — .

By the definition ofé* we finally get

5, <6 — ,/iQ—1 (e) + 1 logn + O G) , (129)
2n 2n n

as required. [ |
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Fig. 11. Low-dimensional IC’s for coding over the unconsteal AWGN. The error probability is set to= 0.01.

VIlI. COMPARISON WITHKNOWN INFINITE CONSTELLATIONS

In this section we compare the finite dimensional bounds ofi@e [IV| with the perfor-
mance of some known IC’s.

We start with the low dimensional IC’s, which include classiphere packings: the
integer lattice, the hexagonal lattice, the packingg Es, BW;s and the leech lattice
A,y (see Conway and Sloane [12]). In low dimensions we presenitéGarlo simulation
results based on the ML decoder. In higher dimensions weidensow density lattice
codes (LDLC) [23] with dimensions = 100, 300, 500 and 1000 (designed by Y. Yona). In
dimensionn = 127 we present the results for the packifg; [24].

In Fig.[11 we show the gap to (Poltyrev’s) capacity of the lowehsional IC’s, where
the error probability is set te = 0.01. As seen in the figure, these low dimensional IC’s
outperform the best achievability bound (Theoiidm 5)nAt 1, the integer lattice achieves
the sphere bound (and is, essentially, the only lattice:fer 1).

From the presentation of Fig.]11 it is difficult to compared@iith different dimensions.
For example, the hexagonal lattice closer to the capadcaty the latticeD,, and also the gap
to the sphere bound is smaller. Obviously this does not nieatri}, is inferior. To facilitate
the comparison between different dimensions we proposéotteving comparison: Set a
fixed value for the error probability fon = 1 denoteds;. Then define, for each, the
normalized error probability

En =S 1— (]_ —61)”.
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Using this normalization enables the true comparison betw€’s with different dimen-
sions. The achieved gap to capacity with a normalized enrobability remains the same
when a scheme is used saytimes, and the block length becomgs n. For example,
the integer lattice maintains a constantor any n with the normalized error probability,
as opposed to the case presented in [Eig. 11, where the parfoetecreasesin Fig.[12
we plot the same data as in Fig.]11 for normalized error prtibabvith ¢, = 107°.
We also plot the normalized error probability itself for eefnce. In Fig[_ 13 we present
the performance of IC’s in higher dimensions (again, withnmalized error probability
and e; = 107°). The included constellations are the leech lattice agfin reference),
LDLC with n = 100, 300, 500, 1000 and degrees, 6, 7, 7 respectively (cf.[[28] and [25] for
more details on the construction of LDLC and the degree).lHalcC’s, the figure shows
simulation results based on a suboptimal low complexityapestric iterative decoder [25].
In addition, we present the performance of the pacléng[24] (which is a multilevel coset
code[16]).

Notes:

« At higher dimensions, the performance of the presented h@’donger outperforms
the achievability bound.

« It is interesting to note that the Leech lattice replicatetirdes (resulting in an IC
at n = 96) outperforms the LDLC withn = 100 (but remember that the LDLC
performance is based on a low complexity suboptimal decatiere the Leech lattice
performance is based on the ML decoder).

« The approximatior(97) no longer holds formally for the cabaormalized error prob-
ability. This follows since the correction term in_(97) deps on the error probability.
Nevertheless, as appears in Higl 13, the approximationaappe still hold.

VIII. V OLUME-TO-NOISE RATIO ANALYSIS

The VNR p, defined in [(2D), can describe the distance from optimabty& given IC
and noise variance, and we say that and@perating at noise level® is in fact operating
at VNR p. Equivalently, we can define the VNR as a function of the IC &mel error
probability: For a given IGS and error probability, let ;(S, <) be defined as follows:

o—26(S)

2mec?(g)’

w(S,e) = (130)
where o?(¢) is the noise variance s.t. the error probability is exaetlfNote thatu(S, ¢)
does not depend on scaling of the & and therefore can be thought of as a quantity that
depends only on the ‘shape’ of the IC.

We now define a related fundamental quaniityc), as the minimal value ofi(S,¢)
among alln-dimensional IC’s. It is known that for any < ¢ < 1, u,(¢) — 1 asn — oo
[17]. We now quantify this convergence, based on the arslytb.(n). It follows from
the definitions ofu, () and d.(n) that the following relation holds for any?:

O
n(e) = 5—g = €200, (131)
(note thatd. (n) implicitly depends ons? as well). We may therefore use the results in the

paper to understand the behaviorof(c). For example, any of the bounds in Theorem 3,
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Fig. 12. Top: performance of different constellations (eitsionsl —24) for normalized error probability, with; = 1075,

Bottom: the normalized error probability.
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Fig. 13. Performance of different constellations (dimens24 —1000) for normalized error probability, wita; = 10~°.

Theorenib or the sphere bound (Theotém 2) can be applied én trdbound.,, (¢) for finite
n ande. Furthermore, the asymptotic behaviorof(¢) is characterized by the following:
Theorem 16:For a fixed error probabilitp) < ¢ < 1, The optimal VNRy,,(¢) is given

by

2
pn(e) =14+ \/;Q

(e) — %logn +0 (%) : (132)

Proof: In Theoreni_1b we have shown that for giverand o2, the optimal NLD§ is

given by

. Lo
5.(n) =8 —/5-Q"

whered” = ;log —

2meg?

According to [131) we write

(e) + % logn+ O (%) , (133)

() = exp [\/%Q_l@) — %IOgn +0 (%)]
=1+ \/%Q_l(ﬁ) - %lognJr O (%)

where the last step follows from the Taylor expansioretf [ |

(134)
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IX. SUMMARY

In this paper we examined the unconstrained AWGN channghgeh the finite dimen-
sion regime. We provided two new achievability bounds anereded the converse bound
(sphere bound) to finite dimensional IC’s. We then analybede bounds asymptotically in
two settings. In the first setting where the NLD (which is eqient to the rate in classic
channel coding) was fixed, we evaluated the (bounds on thie) probability when the
dimensionn grows, and provided asymptotic expansions that are signifig tighter than
those in the existing error exponent analysis. In the sesetithg, the error probability is
fixed, and we investigated the optimal achievable NLD fomgng n. We showed that the
optimal NLD can be tightly approximated by a closed-form regsion, and the gap to the
optimal NLD vanishes as the inverse of the square root of theidsionn. The result is
analogous to the channel dispersion theorem in classiealngi coding, and agrees with the
interpretation of the unconstrained setting as the higiR3izit of the power constrained
AWGN channel. The approach and tools developed in this pegretbe used to extend the
results to more general noise models, and also to finite elbaisbns.
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APPENDIX A
PROOF OF THEBOUNDS EQUIVALENCE

Proof of Theorenil6:It remains to show that

n/o Tw"_l Pr{Z € D(r,w)}dw = /07" fr(p)p™dp. (135)

Lemma 10:For Z ~ N (0, Io?), and anyr > w/2 > 0,

2.2

Pr{Z € D(r,w)} = / ' F2(2) /O T fo (Ddtdz, (136)

w/2

where D(w, r) was defined after EqL(23Y,(2) = —s=e*"/?7") is the pdf of aN(0, o)

2702
is the pdf of ay random variable witm — 1

gn—2,—t2/2

degrees of freedom.
Proof: By the spherical symmetry of the Gaussian pdf, we may assumegv that

random variable, and, ,(t) =
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the hyperplane at distancg is perpendicular to theZ; axis. We therefore have

Pr{Z € D(w,n)} = Pr{Z > 7.,||Z]| < 1}

_ WS o
_Pr{Z1>§,ZZZ- <r }
= fz(2 {ZZ2 < r*|Z, —z} dz

=1

- w;fz(Z) / " e (t)dtdz,

where the last equality follows from the fact thatyga ; random variable is equivalent to
the square root of a sum af— 1 independent squared standard Gaussian random variables.
[ |
We use the result of the lemma and get

2r
n/ w" ' Pr{Z € D(r,w)}dw
0
2.2

—n / sz”—l ' F2(2) /O T fol, (Ddtdzdw

w/2

N —)

n / " /w L y(2) / T o (Ddtdzdw

N/ )

@, / ' / Zzw"-l (%) /0 T f (fdtdwd:
/ / F2(2) fuy (D2,

were (a) follows from changing the order of integration. We set z/0 and get

r/ 2/02 —y?
o) "o f-(ocu dtdu
/0 /0 (20u)"0 fz(ow) fy, . (t)dt

B rloc  pa/T%/0%—u? . 1 2y tn—26—t2/2
= (20u)"——=e¢ — dtdu
: ViR 2 (=)

+1n 712/02_u2
22 = 7 / / W2 (/2 gy
\/_F ”
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We switch to polar coordinates and set pcosf andt = psin . The expression becomes

2 241 om
- / / 21 cos™ § sin™ 2 6’6_”2/2d6’dp

\/_F n T (n=1)
2o / 1 g / " cos™ G52 0 (137)
=y p P mn .
VAT (550) :
It can be shown using e.d. [26, Egs. 18.32 and 25.9] that
w/2 9-n r n—1
/ cos™ 0 sin" " Odl = VT n( 2 ) (138)
0 r (5)

Equation [Z3I7) now simplifies to

1-2 r/o
2 2n / p2n—16—p2/2dp
L) Jo

r/o

=o" fxa(p)p"dp

0

o [ " o fa(op)dp

/fR )p"dp!
= /0 fr(p)p"dp,

where f,, (-) is the pdf of ay random variable witl. degrees of freedom, angk(-) is the
pdf of ||Z||. This completes the proof of the theorem. u

APPENDIX B
PROPERTIES OFREGULAR IC’S

Proof of Lemma2:Let S be a regular IC with a given,. Let V(a) denote the union
of all the Voronoi cells of code points ifb(a):

V2 ) W) (139)
s€SNCHa)
Since all Voronoi cells are bounded in spheres of radiyswe note the following (for
a > 2rg):

. All the Voronoi cells of the code points ifb(a) are contained irCh(a + 2r,), and
thereforeV(a) C Ch(a + 2ry).

« Any point in Cb(a — 2ry) must be in a Voronoi cell of some code point. These code
points cannot be outsidéb(a) because the Voronoi cells are bounded in spheres of
radiusry, so they must lie withirCb(a), and we get thaCb(a — 2r) C V(a).

It follows that
(a —2r0)" < [V(r)] < (a+ 2r0)",

or

(@a=2r0)" < Y w(s) < (a+2r)". (140)
s€SNCh(a)
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Dividing by «™ and taking the limit ofa — oo gives
EséSﬂCb(a) U(S)

lim = 1. (141)
a—00 am
Since, by assumption, the limit of the densitiS) exists, we get
+(S) = tim M15:2)
a—00 a
M
= lim (5,0)
a—00 ZsESﬂCb(a) ,U(S)
B 1
© limg e Eo[v(S)]
1
= . 142
oS (142)
As a corollary, we get that for regular IC’s the average vaurtS) exists in the limit (and
not only in thelim sup sense). [ ]
APPENDIX C

CONVEXITY OF THE EQUIVALENT SPHERE BOUND

Proof of Lemma3:
Suppose is the volume of the Voronoi cell. The radius of the equivalgrhere is given
by r = v'/*V,; /" The equivalent sphere bound is given by

SPBv) = Pr {i 72> 7’2}
zl U2/n
:PI‘{Z(ZZ'/U)z > }

2/TL2
i1 Vi'lo

= Pr {Z(Zz-/aﬁ > (Cy - Mn} , (143)
=1
where(C] is a constant.
We note thad """ ,(Z;/c)? is a sum ofn i.i.d. squared Gaussian RV's with zero mean and
unit variance, which is exactly &2 distribution withn degrees of freedom. We therefore
get:

1 (o]
SP — n/2—1 —:v/2d
BY) = Tz /( T

C1v)
= C’g/ V2 e 2y
(Cl'U)Q/n
2 CyF(C) - v), (144)

whereC; is a constant and’(t) £ [, z"/?~'e~*/2dz. It can be verified by straightforward
differentiation that

02 0% [ 2 2 1

—F(t) = = n2lemw 2y = Zta! ——t2n 145

ozt = gp /W L A U A (145)
which is strictly positive for allt > 0. ThereforeF'(t) is convex, and the equivalent sphere
bound SPBv) = CyF(C4 - v) is a convex function of. n
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APPENDIX D
PROOF OF THEREGULARIZATION LEMMA

Proof of Lemmd4: Our first step will be to find a hypercub€b(a.), so that the
density of the points ir§ N Cb(a.) and the error probability of codewords &N Cb(a.)
are close enough te and e, respectively. We then replicate this cube in order to get a
regular IC with the desired properties. The idea is simitathtat used in[[3, Appendix C],
where it was used for expurgation purposes. As discusséd i dbove, we wish to avoid
expurgation process that weakens the bound for finite diroeakIC'’s.

By the definition of P.(S) and~(S),

v(S) = limsup M(S, a) = lim sup M(S,b)

a—o0 am a—=0 p>q b

> P.(s)= lim sup ! > Ps). (147)

sGSﬂCb(a) @0 p>a M(S, D) s€SMCHb)

Letr, =1+ &andr. =1+ 5
By definition of the limit, there must existy large enough s.t. for every > aq, both

(146)

e = P.(S) =lim sUp -

a—o0 ,

hold:
M(S,b) 1
sup — >y —, (148)
b>a Ty
and
1
sup Y P(s)<e-m. (149)
b>a M(S, D) s€SNCH(b)

Define A s.t. Q(A/o) =¢- % and definena as the solution to
2AN\"
(%) - Jite (150)
an

Let ayax = max{ag, aa}. According to [(14B), there must exigt > ap.x S.t.
MS.a) L (151)
al Ty

By (149) we get that

1 1
- E P.(s) < sup
M(S7 a’*) seSﬂCb(a*) b>amax M(S7 b)

Now consider théinite constellationG = S N Ch(a,). For s € G, denote byP%(s) the
error probability ofs when G is used for transmission with Gaussian noise. Sice S,
clearly P%(s) < P.(s) for all s € G. The average error probability f@¥ is bounded by

P ‘G|Z ‘G|ZP <e T (153)

seG

Z P.(s)<e-T.. (152)

SESNCHb)

We now turn to the second part - constructing an IC from theeced
Define the ICS’ as an infinite replication ofs with spacing of2A between every two
copies as follows:
S2{s+1-(a,+2A):s€G, 1€}, (154)
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whereZ,, denotes the integer lattice of dimension

Now consider the error probability of a poist € S’ denoted byPS'(s). This error
probability equals the probability of decoding by mistakeanother codeword from the
same copy of~ or to a codeword in another copy. By the union bound, we gdt tha

PP (s) < PE(s) + Q(A/o). (155)

The right term follows from the fact that in order to make a tak® to a codeword in a
different copy ofG, the noise must have an amplitude of at leAstThe average error
probability overS’ is bounded by

P(S) < P(G)+Q(A)o) <e- .+ Q(Afo) = (1 +€) (156)

as required, where the last equality follows from the debnitof 7. and A.

The density of points in the new IC enclosed within a cube gfeesizea. + 2A is given
by |G|(a. + 2A)~". Definea, = (a. + 2A)(2k — 1) for any integerk. Note that for any
k > 0, Cb(ax) contains exactly2k — 1)" copies ofG, and therefore

ay ay (a, +2A)"
For anya > 0, let £* be the minimal integek s.t. a, > a. Clearly,
Apr—1 = Qppr — (CL* + 2A) <a < agx. (158)
Therefore V(S 7 V(S M(S'
( 7a'k’*—1) < ( ,CL) S ( 7a'k’*)7 (159)
a™ a” a”
e Gl @, MSaw_ (6l
Apx_q ,a A%
< —. 160
(ax +2A)" an ST S (ax +2A)" an (160)
By taking the limita — oo of (160), we get that the limit exists and is given by
n_ o M(Sa) G|
=1 = .
NS) = lim — = = oAy (161)
It follows that
: |G|
NS) = Gy
G| a}
an (a, +2A)"
(a) 1 Qs "
> -
2 )7'7 (a* + 2A)
g (S)— (162)
=Neye

where (a) follows from (151) and(b) follows from the definitions ofr,, aa and from the
fact thataa < a,.

It remains to show that the resulting I€ is regular, i.e. that all the Voronoi cells can be
bounded in a sphere with some fixed radiysThe fact that the average density is achieved
in the limit (ant not only in thdim sup sense) was already established[in {161).
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Let s be an arbitrary point ir5’. By construction (sed_(154)), the points

{sx (as +2A)e;li =1,...,n}

a7

are also inS’ (wheree; denotes the vector of in the i-th coordinate, and the rest are

zeros). We therefore conclude that the Voronoi d&l(s) is contained in the hypercube
s+ Cb(a, + 2A), and is clearly bounded within a sphere of radiys® \/n(a, +2A). ®

APPENDIX E
PROOF OFINTEGRAL BOUNDING LEMMAS

np

Proof of Lemmal5: Define
77

F(p) £log [p>~te %] = (g — 1) log p —

so thatp2 e /2 = exp[F(p)]. Let F1(p) and Fy(p) be the first and second order Taylor

series of F(p) aroundp = z, respectively, i.e.
Fy(p) = a+Blp—x) —m*(p—x)°

Fi(p) = a+ B(p — x);
nx

-1

lI>

oIS /7 N

where

Q
|3

n-
27

iy
lI>

\‘
[[>
wis| 8
|
—_

222
We note that for any > 0,
2
-5 <log(l+9) <¢
I5(p) < F(p) < Fi(p),

It follows that for all p > z,

and the integral is bounded from above and below by
/ eF2(p)dp < / p%_le_"”ﬂdp < / eFl(p)dp

To prove the upper bound (60) we continue with

/OoeF(p)dpS/ €F1(p)dp
—c [ exp[5(p - a))dp

(163)

(164)

(165)

(166)

where the last equality follows from the assumption- 1 — % Plugging the values fo

and 3 yields (60).
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To prove the lower bound {60) we write

/Oo eF(p)dp > /OO eFQ(”)dp

= /OoeXp la+B(p—x) =7 (p—=)*] dp

= /Oooexp [a+ Bp —72p%] dp

cen(or ) [ (-2

~on (a4 5) L [* Zoo | (5= 32) o
o) 2o()

Plugging back the values far, 5 and v leads to[(6).
We continue with a well known lower bound for tkig function:

1 2 1
> BTl e — . 167
Q(z) > 271_26 (1+z—2) Vz>0 (167)

Recalling the definition of(’, we write

/ p2le™2dp > dxe S exp [12/2] Q
Qe s
n(z—1+2) 1+T 2 )’
to arrive at [(62). Eq.L(63) follows immediately sinte- £ < 1+£ for all £ € R. [ |

Proof of Lemmadl6: We rewrite the integrand as””) where G(p) = —np/2 + (n —
1)log p. SinceG(p) is concave, it is upper bounded its first order Taylor appnation
at any point. We choose the tangentpat z. We denote byG,(p) the first order Taylor
approximation at that point, and get

G(p) < Gilp) = G(z) + G'(z)(p — @), (168)

whereG'(p) = BC;;”) = —5 + "= It follows that

Gr(p) = (n — D(logz — 1) + (—g 40z 1) »

X
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SinceG(p) < G4(p) for all p, we have

/e_"p/zp"_ldp:/ eG(p)dp
0 0

< /m eGl(P)dp
0

_ 2™ ) (e—%x _ 6—(n—1)> ’ (169)

which gives [(75).
Some extra effort is required in order to prove the lower lb{fg). We first switch
variables and get

/ e P2 pn=ldp = / e zu " Ldu (170)
0 1/z
*° n
- /W exp (—% ~ (n+1)log u) du. (171)

We lower bound the exponent as follows:

n n
_ - —1
90 (n+1)logu 70 + (n+ 1)(logz — log(ux))

- _% + (n 4+ 1)(logz — log(1 + uz — 1))

¢ ot (1) (logz — (ur — 1))

2 —%(u2$2 — 3uz +3) + (n + 1)(log z — (uz — 1))

_ _”_;[x2(u— 1/2)? — 2(u—1/2) + 1] + (n + 1)(logz — z(u — 1/z)).

(a) follows from the fact thafog(1l + &) < ¢ for all £ € R. (b) follows from the fact that
% < &2 -3¢+ 3 for all € > 1 (which follows from the fact that¢ — 1)% > 0).

So far the integralf, e="#/?p"~dp is lower bounded by

/100 exp(a+ B(u — 1/z) — 7*(u — 1/2)*)du, (172)

T

where
a=(n+1)logz — n—;;

nr?

a [nad

2
Following the same steps as in the proof[ofl (55) in Lenitha 5gyive

/1;0 exp(a + B(u—1/z) = 7%(u = 1/2)*) > exp (a + f—;) @ (%) . (173)

lI>

B

T
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Plugging the values for, 5 and 7 yields (76). [ZV) follows by applying the lower bound
(167) on theQ function. |

APPENDIX F
APPROXIMATING V,,

Here we derive the required approximations ¥§r used in SectionslV arfd VI.

We first derive [(64).

The volume of a hypersphere of unit radids is given byF /2+1 (see, e.qg.[{12, p. 9)).
We use the Stirling approximation for the Gamma functionfet R (see, e.g.[[27, Sec.

5.11]).
I(z+1) = 2I(z) = z@ (2) (1 +0 G))
- m(é) <1+0 G)) (174)
V, becomes
V, = F(nj;/j_ . (226)71/2 \/% (1 L0 (%)) . 175)

Eq. (II7) follows by taking: log(-) and the Taylor expansion éfg(1+x) aroundz = 0:

1 1 1 n 1

= ~logm — — logn — = log — -

5 logm — 5 logn — o og2€+0<n>
1
T2

2 1 1
logE — 2—logn +0 <n) (176)

APPENDIX G
EVALUATING THE ML BOUND AT 6.,

Proof of Theoreni12:We start as in the proof of Theorém 5 to have

7,,* p*
eV, / fr(r)r'dr = gemvjo—"(%)-%n" / e " dp. (177)
0 0

We evaluate the integral in two parts:

* *

p 2 p
/ e P prdp = / e P p" dp + / e "P2p" Ldp. (178)
0 0 2

The term f02 e ™/2p""1dp can be evaluated by the Laplace method, as in the proof of
LemmalT. The difference is that the exponent is minimizedh wéro first derivative at the
boundary pointp = 2, which causes the integral to be evaluated to half the vafube
integral in Lemmalz, i.e.

2
/ ey = [ emm (140 (L)) (179)
0 2n
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The second term ir_(1¥8) requires some extra effort. We fppeu bound it as follows:

a 2 1 1 2
/ e~/ i dp:/ Zem e/ pdp
2 2 P
( P 1
/ §€—np/2pndp
2

® 1
g/ —e "2"dp
2

INs

2

1
= §e_n2n(p* -2),

where (a) follows since in the integration interva > 2. (b) follows sincee™""/2p" is
maximized atp = 2. With (68) we have

*

1
/ e—np/2pn—1dp < §€—n2n(p* . 2)
2

= 2 (2log(nm) + 0 (22
8T (14 0 ()

n

The integral can also be lower bounded as follows:

p* ) . (@) 1 p* )
/ e~/ P ldp > — e~/ p"dp
2 P J2
(éb) i* L enlog%—%(p—2)2dp
P J2
p*
= i2"6_"/ e 84y
p* 2
1 P72 n
= _*2"6_"/ e 5 dp
Y 0

__on,—n log(mr) logn
- =S (10 ().
(a) follows sincep < p*. (b) follows from the fact thatyp/2+nlogp > nlog 2 — 2(p—2)?
for all p > 2 (which follows from [164)).(c) follows from the Taylor expansio®)({) =
1— £ +0(&) and sincep” — 2 = O(*E2),

2 2T n

In total we get

p* 1

/ e—nﬁ/2pn—1dp — 9ne—n Og(nﬂ-) (1 +0 (%)) )
2 n
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Combined with [(179) we have

* *

p 2 p
/ 6—np/2pn—1dp _ / e—np/2pn—1dp + / 6—np/2pn—1dp
0 0 2

o [ 1 ro2)

The approximation[(64) fo¥/, finally yields

" _ 1 m  log(nm) >
ndecr n — nE;(8cr) — N log“n
e vn/o Falr)yrdr = e = [,/% + ] (1 +0 (—n )) (180)
and the proof is completed by adding the asymptotic fdrmi &8)he sphere bound at

d=0,. n
APPENDIX H
Proof of Theorend_13:The typicality bound is given by
P.(n,8) < AV,r" +Pr{||Z] > r}, (181)

wherer = o+/n(1+ 28 — 28). The rightmost term can be written as (see the proof of
TheorenmD):

2)n/2 oo " _n
L R s (182)
U [2] Jisae—s)
The above integral can be bounded according to Lemdma 5 by
2rze T 1 <, n 2rze” 2
< 2 lemardp < 183
n(x—1+%)1+“f-2—/x P e =1+ D) (183)

wherez = 1 +2(6* —48) and T £ % = O(y/n). Eq. (92) then follows using the

approximation[(64) for/,. [

APPENDIX |

Proof of Theoreni_14: We first prove [(98) (and_(94) follows immediately). Lgt=
e2®"=9)_ The ML bounds for- = \/noe® ~ can be written as (se€ (59) arid|(74)):

. P 2—n/2nn/2 00
PeJVILB _ ﬁen(ts +5)Vn26n/20_2nnn / e—np/2pn—1dp + / e—np/2pn/2—1dp.
2 0 L(n/2) J5
Using Lemmé& b we get that
0o 2~n/2 —np/2 1
/ emel2gn/2=lg, 2P (1 o(2)), (184)
P n(p—1) n

and using Lemmal6 we get that

b 9 51/2p—1/2 1
/ emel2plg, =P (11 0(2)). (185)
0 n(2—p) n

(93) then follows by simple algebra.
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To show [95), repeat the proof of Theorém 11 wijtlinstead ofp*.

To show [(96), repeat the proof of Theoréml 12 wjhinstead ofp*. Here p = 2,
therefore there is no need to split the integral into two ad in [(178). Therefore the
term eV, [ fr(7)F"di contributes th% part of the expression. The contribution of the
sphere bound term (the terf{||Z|| > r}) is approximated as in_(1B4). Note that the result
here is different than the.s case, where the contributions of the two terms in the bound
are of different order (see Ed. (89)). [ |

APPENDIX J
CENTRAL LIMIT THEOREM AND THE BERRY-ESSEENTHEOREM

By the central limit theorem (CLT), A normalized summofndependent random variables
converges (in distribution) to a Gaussian random varialihe. Berry-Esseen theorem shows
the speed of the convergence (seel [28, Ch. XVI.5]). We wréee lthe version for i.i.d.
random variables, which is sufficient for this paper.

Theorem 17 (Berry-Esseen for i.i.d. RVis [28])et {Y;}" , be i.i.d. random variables
with zero mean and unit variance. L&t £ E[|Y;|?] and assume it is finite. Le§, £
ﬁ > i, Y; be the normalized sum. Note thé also has zero mean and unit variance.

Then for alla € R and for alln € IN,

Pr{S, > a} — Q(a)] < % (186)

REFERENCES

[1] G. D. Forney Jr. and G. Ungerboeck, “Modulation and cgdior linear Gaussian channeldEEE Trans. on
Information Theoryvol. 44, no. 6, pp. 2384-2415, 1998.
[2] U. Erez and R. Zamir, “Achieving 1/2 log(1+SNR) over thdditive white Gaussian noise channel with lattice
encoding and decoding/EEE Trans. on Information Theoryol. 50, pp. 2293-2314, Oct. 2004.
[3] G. Poltyrev, “On coding without restrictions for the AWGchannel,”IEEE Trans. on Information Theoryol. 40,
no. 2, pp. 409-417, 1994.
[4] R. G. Gallagernformation Theory and Reliable CommunicatioiNew York, NY, USA: John Wiley & Sons, Inc.,
1968.
[5] C. E. Shannon, “Probability of error for optimal codesamgaussian channelThe Bell System technical journal
vol. 38, pp. 611-656, 1959.
[6] Y. Polyanskiy, H. Poor, and S. Verd(,, “Channel codingeran the finite blocklength regime|EEE Trans. on
Information Theoryvol. 56, no. 5, pp. 2307 —2359, May 2010.
[7] V. Strassen, “Asymptotische abschatzungen in shamimtformationstheorie, Trans. Third Prague Conf. Information
Theory, 1962, Czechoslovak Academy of Scienes689-723.
[8] Y. Polyanskiy, V. Poor, and S. Verdu, “Dispersion of Gaian channels,” ifProc. IEEE International Symposium
on Information Theory2009, pp. 2204-2208.
[9] R. G. GallagerLow-Density Parity-Check CodesCambridge, MA, USA: The M.L.T. Press, 1963.
[10] D. Divsalar, “A simple tight bound on error probabilitf block codes with application to turbo codes,” JPL, TMO
Progr. Rep., pp. 42139, Nov. 1999.
[11] T. M. Cover and J. A. Thomaglements of Information Theary John Wiley & sons, 1991.
[12] J. H. Conway and N. J. A. Sloan8phere packings, lattices and groupsr. Grundlehren der math. Wissenschaften.
Springer, 1993, vol. 290.
[13] E. Hlawka, J. Shoil3engeier, and R. Tasch@pmetric and Analytic Numer TheorySpringer-Verlang, 1991.
[14] P. M. Gruber and C. G. Lekkerkerkegeometry of Numbers Amsterdam: North-Holland, 1987.
[15] V. Tarokh, A. Vardy, and K. Zeger, “Universal bound oretperformance of lattice codedfiformation Theory,
IEEE Transactions gnvol. 45, no. 2, pp. 670 —681, mar. 1999.
[16] G. D. F. Jr., M. D. Trott, and S.-Y. Chung, “Sphere-botathieving coset codes and multilevel coset codésEE
Transactions on Information Thearyol. 46, no. 3, pp. 820-850, 2000.
[17] R. Zamir, “Lattices are everywhere,” ith Annual Workshop on Information Theory and its Applimagi UCSD,
(La Jolla, CA), 2009.



54

(18]
[19]
[20]
[21]

[22]
(23]

[24]
[25]
[26]

[27]
(28]

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY

U. Erez, S. Litsyn, and R. Zamir, “Lattices which are dofor (almost) everything,information Theory, IEEE
Transactions onvol. 51, no. 10, pp. 3401 — 3416, oct. 2005.

J. M. Wozencraft and I. M. JacobBrinciples of Communication Engineering’rospect Heights, IL, USA: Waveland
Press Inc., 1990, originally Published 1965 by Wiley.

O. E. Barndorff-Nielsen and D. R. Co¥symptotic Techniques for Use in StatisticdNew York: Chapman and
Hall, 1989.

I. Csiszar and J. Korneinformation Theory - Coding Theorems for Discrete Mema@yl&ystems New York:
Academic Press, 1981.

A. Ingber and M. Feder, “Parallel bit-interleaved cddmodulation,”Available on arxiv.org

N. Sommer, M. Feder, and O. Shalvi, “Low-density laticodes,”IEEE Trans. on Information Theoryol. 54,
no. 4, pp. 1561-1585, 2008.

D. Agrawal and A. Vardy, “Generalized minimum distandecoding in euclidean space: Performance analysis,”
IEEE Trans. on Information Theoryol. 46, pp. 60-83, 2000.

Y. Yona and M. Feder, “Efficient parametric decoder oivldensity lattice codes,” ifProc. IEEE International
Symposium on Information Theor3009, pp. 744-748.

M. R. Spiegel,Mathematical Handbook of Formulas and TableNew York: McGraw-Hill, 1999.

N. I. of Standards and Technology, “Digital library ofathematical functions|” http://dimf.nist.gov, May 2010.
W. Feller,An Introduction to Probability Theory and Its Applicationglume 2 (2nd Edition) John Wiley & Sons,
1971.


http://dlmf.nist.gov

	I Introduction
	I-A New Finite-Dimensional Performance Bounds
	I-B Asymptotic Analysis: Fixed NLD
	I-C Asymptotic Analysis: Fixed Error Probability
	I-D Volume-to-Noise Ratio (VNR)

	II Definitions
	II-A Notation
	II-B Measuring the Gap from Capacity

	III Previous Results
	III-A Known Bounds on Pe(n,bold0mu mumu )
	III-B Known Asymptotic Bounds at Fixed bold0mu mumu  (Error Exponent)

	IV Bounds for Finite Dimensional IC's
	IV-A Typicality Decoder Based Bound
	IV-B ML Decoder Based Bound
	IV-C Equivalence of the ML bound with Poltyrev's bound
	IV-D The Sphere Bound for Finite Dimensional Infinite Constellations
	IV-E Numerical Comparison

	V Analysis and Asymptotics at Fixed NLD bold0mu mumu 
	V-A Analysis of the Sphere Bound
	V-B Analysis of the ML Bound Above bold0mu mumu cr
	V-C Tightness of the Bounds Above bold0mu mumu cr
	V-D The ML Bound Below bold0mu mumu cr
	V-E The ML Bound at bold0mu mumu cr
	V-F Asymptotic Analysis of the Typicality Bound
	V-G Asymptotic Analysis of PeMLB with Poltyrev's r=n ebold0mu mumu *-bold0mu mumu 

	VI Asymptotics for Fixed Error Probability
	VI-A The Dispersion of Infinite Constellations
	VI-B A Key Lemma
	VI-C Proof of Theorem 15

	VII Comparison with Known Infinite Constellations
	VIII Volume-to-Noise Ratio Analysis
	IX Summary
	Appendix A: Proof of the Bounds Equivalence
	Appendix B: Properties of Regular IC's
	Appendix C: Convexity of the equivalent sphere bound
	Appendix D: Proof of the Regularization Lemma
	Appendix E: Proof of Integral Bounding Lemmas
	Appendix F: Approximating Vn
	Appendix G: Evaluating the ML Bound at bold0mu mumu cr
	Appendix H
	Appendix I
	Appendix J: Central Limit Theorem and the Berry-Esseen Theorem
	References

