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Abstract

In the setting of a Gaussian channel without power constraints, proposed by Poltyrev, the
codewords are points in ann-dimensional Euclidean space (an infinite constellation) and the
tradeoff between theirdensityand the error probability is considered. The capacity in this setting
is the highest achievable normalized log density (NLD) withvanishing error probability. This
capacity as well as error exponent bounds for this setting are known. In this work we consider
the optimal performance achievable in the fixed blocklength(dimension) regime. We provide two
new achievability bounds, and extend the validity of the sphere bound to finite dimensional infinite
constellations. We also provide asymptotic analysis of thebounds: When the NLD is fixed, we
provide asymptotic expansions for the bounds that are significantly tighter than the previously
known error exponent results. When the error probability isfixed, we show that asn grows, the
gap to capacity is inversely proportional (up to the first order) to the square-root ofn where
the proportion constant is given by the inverse Q-function of the allowed error probability, times
the square root of1

2
. In an analogy to similar result in channel coding, the dispersion of infinite

constellations is1
2
nat

2 per channel use. All our achievability results use latticesand therefore
hold for the maximal error probability as well. Connectionsto the error exponent of the power
constrained Gaussian channel and to the volume-to-noise ratio as a figure of merit are discussed.
In addition, we demonstrate the tightness of the results numerically and compare to state-of-the-art
coding schemes.

Index Terms

Infinite constellations, Gaussian channel, Poltyrev setting, Poltyrev exponent, finite block-
length, dispersion, precise asymptotics

I. INTRODUCTION

Coding schemes over the Gaussian channel are traditionallylimited by the average/peak
power of the transmitted signal [1]. Without the power restriction (or a similar restriction)
the channel capacity becomes infinite, since one can space the codewords arbitrarily far
apart from each other and achieve a vanishing error probability. However, many coded
modulation schemes take an infinite constellation (IC) and restrict the usage to points of
the IC that lie within somen-dimensional form in Euclidean space (a ‘shaping’ region).
Probably the most important example for an IC is a lattice (see Fig. 1), and examples for
the shaping regions include a hypersphere inn dimensions, and a Voronoi region of another
lattice [2].
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(a) A lattice (b) A non-lattice infinite constellation

Fig. 1. Examples for 2-dimensional infinite constellations. Only a finite section of the IC is shown.

In 1994, Poltyrev [3] studied the model of a channel with Gaussian noise without power
constraints. In this setting the codewords are simply points of the infinite constellation in
the n-dimensional Euclidean space. The analog to the number of codewords is the density
γ of the constellation points (the average number of points per unit volume). The analog
of the communication rate is the normalized log density (NLD) δ , 1

n
log γ. The error

probability in this setting can be thought of as the average error probability, where all the
points of the IC have equal transmission probability (precise definitions follow later on in
the paper).

Poltyrev showed that the NLDδ is the analog of the rate in classical channel coding, and
established the corresponding “capacity”, the ultimate limit for the NLD denotedδ∗ (also
known as Poltyrev’s capacity), given by1

2
log 1

2πeσ2 , whereσ2 denotes the noise variance per
dimension1. Random coding, expurgation and sphere packing error exponent bounds were
derived, which are analogous to Gallager’s error exponentsin the classical channel coding
setting [4], and to the error exponents of the power-constrained additive white Gaussian
noise (AWGN) channel [5], [4].

In classical channel coding, the channel capacity gives theultimate limit for the rate
when arbitrarily small error probability is required, and the error exponent quantifies the
(exponential) speed at which the error probability goes to zero as the dimension grows,
where the rate is fixed (and below the channel capacity). Thistype of analysis is asymptotic
in nature - neither the capacity nor the error exponent theory can tell what is the best
achievable error probability with a given rateR and block lengthn. A big step in the non-
asymptotic direction was recently made in a paper by Polyanskiy et al. [6], where explicit
bounds for finiten were derived. In addition to the error exponent formulation, another
asymptotic question can be asked: Suppose that the (codeword) error probability is fixed

1logarithms are taken w.r.t. to the natural basee and rates are given in nats.
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to some valueε. Let Rε(n) denote the maximal rate for which there exist communication
schemes with codelengthn and error probability at mostε. As n grows,Rε(n) approaches
the channel capacityC, and the speed of convergence is quantified by [7][6]

Rε(n) = C −
√

V

n
Q−1(ε) +O

(

logn

n

)

, (1)

whereQ−1(·) is the inverse complementary standard Gaussian cumulativedistribution func-
tion. The constantV , termed the channel dispersion, is the variance of the information
spectrumi(x; y) , log PXY (x,y)

PX(x)PY (y)
for a capacity-achieving distribution. This result holds

for discrete memoryless channels (DMC’s), and was recentlyextended to the (power con-
strained) AWGN channel [8][6]. More refinements of (1) and further details can be found
in [6].

In this paper we take an in-depth look at the unconstrained Gaussian channel where
the block length (dimension) is finite. We give new achievability bounds which enable
easy evaluation of the achievable error probability. We then analyze the new achievability
bounds and the so-called sphere bound (converse bound), andobtain asymptotic analysis
of the lowest achievable error probability for fixed NLDδ which greatly refines Poltyrev’s
error exponent results. In addition, we analyze the behavior of the highest NLD when the
error probability is fixed. We show that the behavior demonstrated in (1) for DMC’s and the
power constrained AWGN channel carries on to the unconstrained AWGN channel as well.
We demonstrate the tightness of the results both analytically and numerically, and compare
to state-of-the-art coding schemes.

The main results in the paper are summarized below.

A. New Finite-Dimensional Performance Bounds

Poltyrev’s achievability results [3] for the capacity and for the error exponent are based
on a bound that holds for finite dimensions, but is hard to calculate, as it involves optimizing
w.r.t. a parameter and 3-dimensional integration. We derive two new bounds that hold for
finite dimensions, and are easier to calculate than Poltyrev’s. Like Poltyrev’s bound, we
bound the error probability by the sum of the probability that the noise leaves a certain
region (a sphere), and the probability of error for noise realization within that sphere.
This classic technique is due to Gallager [9], sometimes called “Gallager’s first bounding
technique” [10]. Our first bound, called thetypicality bound, is based on a simple ‘typicality’
decoder (close in spirit to that used in the standard achievability proofs [11]). It shows that
there exist IC’s with NLDδ and error probability bounded by

Pe ≤ P TB
e (n, δ) , enδVnr

n + Pr {‖Z‖ > r} , (2)

whereVn denotes the volume of ann-dimensional sphere with unit radius [12] andZ denotes
the noise vector. The bound holds for anyr > 0, and the value minimizing the bound is
given byr = σ

√

n(1 + 2δ∗ − 2δ). Evaluating this bound only involves 1D integration, and
the simple expression is amenable to precise asymptotic analysis. A stronger bound, called
the maximum likelihood (ML) bound, which is based on the ML decoder, shows that there
exist IC’s with error probability bounded by

Pe ≤ PMLB
e (n, δ) , enδVn

∫ r

0

fR(r̃)r̃
ndr̃ + Pr {‖Z‖ > r} , (3)
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fR(·) is the pdf of the norm‖Z‖ of the noise vector. The bound holds for anyr > 0, and
the value minimizing the bound is given byr = reff , e−δV

−1/n
n . Note thatreff , called

the effective radiusof the lattice (or IC), is the radius of a sphere with the same volume
as the Voronoi cell of the lattice (or the average volume of the Voronoi cells of the IC2 ).
Evaluating the ML bound also involves 1D integration only. We further show that the ML
bound gives the exact value of Poltyrev’s bound, therefore the simplicity does not come at
the price of a weaker bound.

In the achievability part of the results we use lattices (andthe Minkowski-Hlawka theorem
[13][14]). Because of the regular structure of lattices, all our achievability results hold in
the stronger sense of maximal error probability. In the converse part we base our results on
the sphere bound [15][3][16], i.e. on the fact that the errorprobability is lower bounded by
the probability that the noise leaves a sphere with the same volume as a Voronoi cell. For
lattices (and more generally, for IC’s with equal-volume Voronoi cells), it is given by

Pe ≥ P SB
e (n, δ) , Pr{‖Z‖ > reff}. (4)

We extend the validity of the sphere bound toany IC, and to the stronger sense ofaverage
error probability. Therefore our results hold for both average and maximal error probability,
and for any IC (lattice or not).

Note that since the optimal value forr in the ML bound (3) is exactlyreff , the difference
between the ML upper bound and the sphere packing lower boundis the left term in (3).
This fact enables a precise evaluation of the best achievable Pe, see Section V.

B. Asymptotic Analysis: Fixed NLD

The asymptotics of the bounds on the error probability were studied by Poltyrev [3] using
large deviation techniques and error exponents. The error exponent for the unconstrained
AWGN is defined in the usual manner:

E(δ) , lim
n→∞

1

n
logPe(n, δ), (5)

(assuming the limit exists), wherePe(n, δ) is the best error probability for any IC with NLD
δ. Poltyrev showed that the error exponent is bounded by the random coding and sphere
packing exponentsEr(δ) and Esp(δ) which are the infinite constellation counterparts of
the similar exponents in the power constrained AWGN. The random coding and sphere
packing exponents coincide when the NLD is above the critical NLD δcr, defined later
on. However, even when the error exponent bounds coincide, the optimal error probability
Pe(n, δ) is known only up to an unknown sub-exponential term (which can be, for example
n100, or worse, e.g.e

√
n). We present a significantly tighter asymptotic analysis using a

more delicate (and direct) approach. Specifically, we show that the sphere bound is given
asymptotically by

P SB
e (n, δ) ∼= e−nEsp(δ)

(nπ)−
1
2
e2(δ

∗
−δ)

e2(δ
∗−δ) − 1

, (6)

2Note that the average volume of the Voronoi cells is not always well-defined, as in general there may exist cells with
infinite volume. See IV-D for more details.
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wherea ∼= b means thata
b
→ 1. We further show that the ML bound is given by

PMLB
e (n, δ) ∼=















e−nEr(δ) 1√
2πn

, δ < δcr;
e−nEr(δ) 1√

8πn
, δ = δcr;

e−nEr(δ) (nπ)−
1
2 e2(δ

∗
−δ)

(2−e2(δ
∗
−δ))(e2(δ∗−δ)−1)

, δcr < δ < δ
∗;

(7)

As a consequence, for NLD aboveδcr, Pe(n, δ) is known asymptotically up toa constant,
compared to a sub-exponential term in Poltyrev’s error exponent analysis. The weaker
typicality bound is given by

P TB
e (n, δ) ∼= e−nEt(δ)

1√
nπ

· 1 + 2(δ∗ − δ)

2(δ∗ − δ)
(8)

whereEt(δ) is the typicality exponent, defined later on, which is lower thanEr(δ).

C. Asymptotic Analysis: Fixed Error Probability

For a fixed error probability valueε, let δε(n) denote the maximal NLD for which there
exists an IC with dimensionn and error probability at mostε. We shall be interested in
the asymptotic behaviorδε(n). This type of analysis for infinite constellations has never
appeared in literature (to the best of the authors’ knowledge). In the current paper we utilize
central limit theorem (CLT) type tools (specifically, the Berry-Esseen theorem) to give a
precise asymptotic analysis ofδε(n), a result analogous to the channel dispersion [7][8][6]
in channel coding. Specifically, we show that

δε(n) = δ
∗ −

√

1

2n
Q−1(ε) +

1

2n
log n+O

(

1

n

)

. (9)

By the similarity to Eq. (1), we identify the constant1
2

as the dispersion of infinite constel-
lations. This fact can be intuitively explained in several ways:

• The dispersion as the (inverse of the) second derivative of the error exponent:for
DMC’s and for the power constrained AWGN channel, the channel dispersion is given
by the inverse of the second derivative of the error exponentevaluated at the capacity
[6]. Straightforward differentiation of the error exponent E(δ) (which near the capacity
is given byEr(δ) = Esp(δ)) verifies the value of1

2
.

• The unconstrained AWGN channel as the high-SNR AWGN channel: While the capacity
of the power constrained AWGN channel grows without bound with the SNR, the error
exponent attains a nontrivial limit. This limit is the errorexponent of the unconstrained
AWGN channel (as noticed in [2]), where the distance to capacity is replaced by the
NLD distance toδ∗. By this analogy, we examine the high-SNR limit of the dispersion
of the AWGN channel (given in [8][6] by1

2
(1− (1 + SNR)−2)) and arrive at the

expected value of1
2
.

D. Volume-to-Noise Ratio (VNR)

Another figure of merit for lattices (that can be defined for general IC’s as well) is the
volume-to-noise ratio (VNR), which generalizes the SNR notion [16] (see also [17]). The
VNR quantifies how good a lattice is for channel coding over the unconstrained AWGN
at some given error probabilityε. It is known that for anyε > 0, the optimal (minimal)
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VNR of any lattice approaches1 when the dimensionn grows (see e.g. [17]). We note that
the VNR and the NLD are tightly connected, and deduce equivalent finite-dimensional and
asymptotic results for the optimal VNR.

The paper is organized as follows. In Section II we define the notations and in Section III
we review previous results. In Section IV we derive the new typicality and ML bounds for
the optimal error probability of finite dimensional IC’s, and we refine the sphere bound as
a lower bound on the average error probability for any finite dimensional IC. In Section V
the bounds are analyzed asymptotically with the dimension where the NLD is fixed, to
derive asymptotic bounds that refine the error exponent bounds. In Section VI we fix the
error probability and study the asymptotic behavior of the optimal achievable NLD with
n. We use normal approximation tools to derive the dispersiontheorem for the setting. In
Section VII we compare the bounds from previous sections with the performance of some
good known infinite constellations. In Section VIII we discuss the VNR and its connection
to the NLD δ. We conclude the paper in Section IX.

II. DEFINITIONS

A. Notation

We adopt most of the notations of Poltyrev’s paper [3]: LetCb(a) denote a hypercube
in R

n

Cb(a) ,
{

x ∈ R
n s.t. ∀i|xi| <

a

2

}

. (10)

Let Ball(r) denote a hypersphere inRn and radiusr > 0, centered at the origin

Ball(r) , {x ∈ R
n s.t. ‖x‖ < r}, (11)

and let Ball(y, r) denote a hypersphere inRn and radiusr > 0, centered aty ∈ R
n

Ball(y, r) , {x ∈ R
n s.t. ‖x− y‖ < r}. (12)

Let S be an IC. We denote byM(S, a) the number of points in the intersection ofCb(a)
and the ICS, i.e. M(S, a) , |S

⋂

Cb(a) |. The density ofS, denoted byγ(S), or simply
γ, measured in points per volume unit, is defined by

γ(S) , lim sup
a→∞

M(S, a)
an

. (13)

The normalized log density (NLD)δ is defined by

δ = δ(S) , 1

n
log γ. (14)

It will prove useful to define the following:
Definition 1 (Expectation over points in a hypercube):Let Ea[f(s)] denote the expecta-

tion of an arbitrary functionf(s), f : S → R, wheres is drawn uniformly from the code
points that reside in the hypercubeCb(a):

Ea[f(s)] ,
1

M(S, a)
∑

s∈S∩Cb(a)

f(s). (15)
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Throughout the paper, an IC will be used for transmission of information through the
unconstrained AWGN channel with noise varianceσ2 (per dimension). The additive noise
shall be denoted byZ = [Z1, ..., Zn]

T . An instantiation of the noise vector shall be denoted
by z = [z1, ..., zn]

T .
For s ∈ S, let Pe(s) denote the error probability whens was transmitted. When the

maximum likelihood (ML) decoder is used, the error probability is given by

Pe(s) = Pr{s+ Z /∈ W (s)}, (16)

whereW (s) is theVoronoi regionof s, i.e. the convex polytope of the points that are closer
to s than to any other points′ ∈ S. The maximal error probability is defined by

Pmax
e (S) , sup

s∈S
Pe(s), (17)

and the average error probability is defined by

Pe(S) , lim sup
a→∞

Ea[Pe(s)]. (18)

The following related quantities, define the optimal performance limits for IC’s.
Definition 2 (Optimal Error Probability and Optimal NLD):

• Given NLD valueδ and dimensionn, Pe(n, δ) denotes the optimal error probability
that can be obtained by any IC with NLDδ and a finite dimensionn.

• Given an error probability valueε and dimensionn, δε(n) denotes the maximal NLD
for which there exists an IC with dimensionn and error probability at mostε.

Clearly, these two quantities are tightly connected, and any nonasymptotic bound for either
quantity gives a bound for the other. However, their asymptotic analysis (withn → ∞) is
different: for fixedδ < δ

∗, it is known thatPe(n, δ) vanishes exponentially withn. In this
paper we will refine these results. For a fixed error probability ε, it is known thatδε(n) goes
to δ

∗ whenn → ∞. In this paper we will show that the gap toδ∗ vanishes likeO (1/
√
n),

see Section VI.

fn = O(gn) shall mean that there exist a constantc s.t. for all n > n0 for somen0,
|fn| ≤ c · gn. Similarly, fn ≤ O(gn) shall mean that there existc, n0 s.t. for all n > n0,
fn ≤ c·gn. fn ≥ O(gn) means−fn ≤ O(−gn). fn = Θ(gn) shall mean that bothfn = O(gn)
andgn = O(fn) hold.

B. Measuring the Gap from Capacity

Suppose we are given an ICS with a given densityγ (and NLD δ = 1
n
log γ), used for

information transmission over the unconstrained AWGN withnoise varianceσ2. The gap
from optimality can be quantified in several ways.

Knowing that the optimal NLD (forn → ∞) is δ
∗, we may consider the difference

∆δ = δ
∗ − δ, (19)

which gives the gap to capacity innats, where a zero gap means that we are working at
capacity. An equivalent alternative would be to measure theratio between the noise variance
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that is tolerable (in the capacity sense) with the given NLDδ, given by e−2δ

2πe
, and the actual

noise varianceσ2 (equal to e−2δ∗

2πe
). This ratio is given by

µ ,
e−2δ/(2πe)

σ2
= e2(δ

∗−δ). (20)

For lattices, the terme−2δ is equal tov2/n, wherev is the volume of a Voronoi cell of
the lattice. Thereforeµ was termed theVolume-to-Noise Ratio(VNR) by Forney et al. [16]
(where it is denoted byα2(Λ, σ2)). The VNR can be defined for general IC’s as well. It is
generally above1 (below capacity) and approaches1 at capacity. It is often expressed in
dB 3, i.e.

10 log10
e−2δ/(2πe)

σ2
= 10 log10 e

2(δ∗−δ) ∼= 8.6859∆δ. (21)

Note that the VNR appears under different names and scalingsin the literature. Poltyrev
[3] defined the quantitye

−2δ

σ2 and called it the Generalized SNR (and also denoted it byµ).
In certain cases the latter definition is beneficial, as it canbe viewed as the dual of the
normalized second moment (NSM), which atn → ∞ approaches 1

2πe
[17].

An alternative way to quantify the gap from optimal performance is based on the fact
that the Voronoi regions of an optimal IC (atn → ∞) becomes sphere-like. For example,
the sphere bound (the converse bound) is based on a sphere with the same volume as the
Voronoi cells of the IC (i.e. a sphere with radiusreff). As n grows, the Voronoi regions of
the optimal IC (that achieves capacity) becomes closer to a sphere with squared radius that
is equal to the mean squared radius of the noise,nσ2. Therefore a plausible way to measure
the gap from optimality would be to measure the ratio betweenthe squared effective radius
of the IC and the expected squared noise amplitude, i.e.

ρ ,
r2eff
nσ2

=
e−2δV

−2/n
n

nσ2
. (22)

This quantity was called “Lattice SNR” in [15], and “Voronoi-to-Noise Effective Radius
Ratio” (squared) in [18]. Similarly to the VNRµ, this ratio also approaches1 at capacity, and
is also often expressed in dB. However, the two measures (20)and (22) are not equivalent.
For a given gap in dB, different IC densities (and NLD’s) are derived, and only asn → ∞
the measures coincide (this can be seen by approximatingVn, see Appendix F). In the
current paper, whenever we state a gap from capacity in dB, werefer to the gap (21).

In the current paper we shall be interested in the gap to capacity in the forms of (19) and
(20). The finite-dimensional results in Section IV are specific for eachn and can be written
as a function of either the NLDδ or the ratio (22). However, the asymptotic analysis in
Sections V and VI depends on the selected measure. Specifically, in Section V we study
the behavior of the error probability withn → ∞ where δ is fixed. This is equivalent
to fixing the ratio (20) (but not (22)). While the exponentialbehavior of the bounds on
the error probability is the same whether we fix (20) or (22), the sub-exponential behavior
differs. In Section VI we are interested in the behavior of the gap (19) withn → ∞ for
fixed error probability. Equivalent results in terms of the ratio (22) can be derived using the
same tools4.

3For ∆δ measured in bits we would get the familiar 6.02 dB/bit instead of 8.6859 dB/nat in (21).
4It is interesting to note that although we choose to stick with the gap in nats and to the ratio (20), the term (22) will

pop out in the asymptotic analysis in Section V.
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III. PREVIOUS RESULTS

A. Known Bounds onPe(n, δ)

Here we review existing non-asymptotic bounds onPe(n, δ), and discuss how easy are
they for evaluation and asymptotic analysis.

The following non-asymptotic achievability bound can be distilled from Poltyrev’s paper
[3]:

Theorem 1 (Poltyrev’s achievability):For anyr > 0,

Pe(n, δ) ≤ enδnVn

∫ 2r

0

wn−1Pr{Z ∈ D(r, w)}dw + Pr{‖Z‖ > r}, (23)

whereD(r, w) denotes the section of the sphere with radiusr that is cut off by a hyperplane
at a distancew

2
from the origin.

In [3] it is stated that the optimal value forr (the one that minimizes the upper bound)
is given by the solution to an integral equation, and it is shown that asn → ∞, the optimal
r satisfiesr2

n
→ σ2e2(δ

∗−δ). However, no explicit expression for the optimalr is given, so
in order to compute the bound for finite values ofn one has to numerically optimize w.r.t.
r (in addition to the numerical integration). In order to derive the error exponent result,
Poltyrev [3] used the asymptotic (but suboptimal)r =

√
nσeδ

∗−δ.

The converse bound used in [3], which will be used in the current paper as well, is based
on the following simple fact:

Theorem 2 (Sphere bound):Let W (s) be the Voronoi region of an IC points, and let
SW (s) denote a sphere with the same volume asW (s). Then the error probabilityPe(s) is
lower bounded by

Pe(s) ≥ Pr{Z /∈ SW (s)}, (24)

whereZ denotes the noise vector.
This simple but important bound (see, e.g. [15][19]) is based on the fact that the pdf of the
noise vector has spherical symmetry and decreases with the radius. An immediate corollary
is the following bound for lattices (or more generally, any IC with equal-volume Voronoi
cells):

Pe(n, δ) ≥ P SB
e (n, δ) , Pr{‖Z‖ > reff} =

∫ ∞

reff

fR(r
′)dr′, (25)

wherereff is the radius of a hypersphere with the same volume as a Voronoi cell, andfR(r)
is the pdf of the norm of the noise vector, i.e. a (normalized)Chi distribution withn degrees
of freedom.

Note that this bound holds for any points in the IC, therefore it holds for the average
error probabilityPe(n, δ) (and trivially for the maximal error probability as well). In [3]
the argument is extended to IC’s which not necessarily obey the constant volume condition
in the following manner: first, it is claimed that there must exist a Voronoi region with
volume that is at less than the average volumeγ−1, so the bound holds forPmax

e (S). In
order to apply the bound to the average error probability, a given IC S with average error
probability ε is expurgated to get another ICS ′ with maximalerror probability at most2ε.
Applying the previous argument for the maximal error probability of S ′ gives a bound on
the average error probability ofS. The expurgation process, in addition to the factor of 2
in the error probability, also incurs a factor of 2 loss in thedensityγ. When evaluating
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the asymptotic exponential behavior of the error probability these factors have no meaning,
but if we are interested (as in the case in this paper) in the bound values for finiten, and
in the asymptotic behavior ofδε(n), these factors weaken the sphere bound significantly.
In Section IV we show that (25) holds verbatim for any finite dimensional IC, and for the
average error probability as well.

The sphere bound (25) includes a simple (but with no known closed-form solution) 1D
integral and can be evaluated numerically. An alternative for the numerical integration was
proposed in [15], where the integral was transformed into a sum ofn/2 elements to allow the
exact calculation of the bound. While the result gives an alternative to numeric integration,
it does not shed any light on the asymptotic behavior of the bound with growingn.

B. Known Asymptotic Bounds at Fixedδ (Error Exponent)

The error exponentE(δ) for the unconstrained AWGN was defined in (5). The nonasymp-
totic bounds in the previous subsection can lead to upper andlower bounds on the exponent.

The asymptotic evaluation of Poltyrev’s achievability bound (Theorem 1) is hard: in [3],
in order to provide a lower bound on the error exponent, a suboptimal value forr is chosen
for finite n

(

r =
√
nσe−(δ∗−δ)

)

. The resulting bound is the random coding exponent for
this settingEr(δ), given by

Er(δ) =







δ
∗ − δ + log e

4
, δ ≤ δcr;

1
2

[

e2(δ
∗−δ) − 1− 2(δ∗ − δ)

]

, δcr ≤ δ < δ
∗;

0, δ ≥ δ
∗,

(26)

whereδcr = 1
2
log 1

4πeσ2 . Poltyrev also provided an expurgation-type argument to improve
the error exponent at low NLD values (belowδex , δ

∗− log 2). This NLD region is outside
the focus of the current paper.

An upper bound on the error exponent is the sphere packing exponent. It is given by [3]:

Esp(δ) =
1

2

[

e2(δ
∗−δ) − 1− 2(δ∗ − δ)

]

, (27)

which is derived from the sphere bound (see [3, Appendix C]).
The upper and lower bounds on the error exponent only hint on the value ofPe(n, δ):

e−n(Esp(δ)+o(1)) ≤ Pe(n, δ) ≤ e−n(Er(δ)+o(1)). (28)

Even when the error exponent bounds coincide (above the critical NLD δcr), the optimal
error probabilityPe(n, δ) is known only up to an unknown sub-exponential term. In Sec-
tion V we present a significantly tighter asymptotic analysis and show, for example, that at
NLD aboveδcr, Pe(n, δ) is known, asymptotically, up toa constant.

IV. BOUNDS FORFINITE DIMENSIONAL IC’ S

In this section we analyze the optimal performance of finite dimensional infinite constel-
lations in Gaussian noise. We describe two new achievability bounds, both based on lattices:
The first bound is based on a simple ‘typicality’ decoder, andthe second one based on the
ML decoder. Both bounds result in simpler expressions than Poltyrev’s bound (Theorem 1).
The first bound is simpler to derive but proves to be weak. The second bound gives the
exact value of the bound as Poltyrev’s (Theorem 1), without the need for 3D integration and
an additional numeric optimization, but only a single 1D integral (which can be analyzed
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further - see Section V). As for converse bounds, we extend the validity of the sphere
bound to the most general case of IC’s (not only those with equal-volume Voronoi cells)
and average error probability.

A. Typicality Decoder Based Bound

Theorem 3:For anyr > 0,

Pe(n, δ) ≤ P TB
e , enδVnr

n + Pr {‖Z‖ > r} , (29)

and the optimal value forr is given by

r∗ = σ
√

n(1 + 2δ∗ − 2δ). (30)

Proof: Let Λ be a lattice that is used as an IC for transmission over the unconstrained
AWGN. We consider a suboptimal decoder, and therefore the performance of the optimal
ML decoder can only be better. The decoder, called atypicality decoder, shall operate as
follows. Suppose thatλ ∈ Λ is sent, and the pointy = λ + z is received, wherez is the
additive noise. Letr be a parameter for the decoder, which will be determined later on.
If there is only a single point in the ball Ball(y, r), then this will be the decoded word.
If there are no codewords in the ball, or more than one codeword in the ball, an error is
declared (one of the code points is chosen at random).

Lemma 1:The average error probability of a latticeΛ (with the typicality decoder) is
bounded by

Pe(Λ) ≤ Pr {Z /∈ Ball(r)}+
∑

λ∈Λ\{0}
Pr {Z ∈ Ball(λ, r) ∩ Ball(r)} , (31)

whereZ denotes the noise vector.
Proof: SinceΛ is a lattice we can assume without loss of generality that thezero point

was sent. We divide the error events to two cases. First, if the noise falls outside the ball
of radiusr (centered at the origin), then there surely will be erroneous decoding since the
transmitted (0) point is outside the ball. The remaining error cases are where the noiseZ
is within Ball(r), and the noise falls in the typical ball of some other latticepoint (that is
different than the transmitted zero point). We therefore get

Pe(Λ) ≤ Pr {Z /∈ Ball(r)}+ Pr







Z ∈ Ball(r)
⋂





⋃

λ∈Λ\{0}
Ball(λ, r)











= Pr {Z /∈ Ball(r)}+ Pr







Z ∈
⋃

λ∈Λ\{0}
Ball(λ, r) ∩ Ball(r)







≤ Pr {Z /∈ Ball(r)}+
∑

λ∈Λ\{0}
Pr {Z ∈ Ball(λ, r) ∩ Ball(r)} , (32)

where the last inequality follows from the union bound.
We use the Minkowski-Hlawka theorem [14][13]:5

5 The MH theorem is usually written as (33) with anǫ added to the RHS that is arbitrarily small (e.g. [13, Lemma 3,
p. 65], and [14, Theorem 1, p. 200]). The version (33) followsfrom a slightly improved version of the theorem due to
Siegel, often called the Minkowski-Hlawka-Siegel (MHS) theorem, see [14, Theorem 5, p. 205].
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Theorem 4 (MH):Let f : Rn → R
+ be a nonnegative integrable function with bounded

support. Then for everyγ > 0, there exist a latticeΛ with det Λ = γ−1 that satisfies

∑

λ∈Λ\{0}
f(λ) ≤ γ

∫

Rn

f(λ)dλ. (33)

SincePr {Z ∈ Ball(λ, r) ∩ Ball(r)} = 0 for any λ s.t. ‖λ‖ > 2r we may apply the MH
theorem to the sum in (32). We deduce that for anyγ > 0, there must exist a latticeΛ with
densityγ, s.t.

∑

λ∈Λ\{0}
Pr {Z ∈ Ball(λ, r) ∩ Ball(r)} ≤ γ

∫

Rn

Pr {Z ∈ Ball(λ, r) ∩ Ball(r)} dλ. (34)

We further examine the resulting integral:
∫

Rn

Pr {Z ∈ Ball(λ, r) ∩ Ball(r)} dλ

=

∫

Rn

∫

Ball(λ,r)∩Ball(r)
fZ(z)dzdλ

≤
∫

Rn

∫

Ball(λ,r)
fZ(z)dzdλ

=

∫

Rn

∫

Ball(r)
fZ(z

′ + λ)dz′dλ

=

∫

Ball(r)
1dz′

= Vnr
n. (35)

Combined with (31) we get that there exist a latticeΛ with densityγ, for which

Pe(Λ) ≤ γVnr
n + Pr {‖Z‖ > r} , (36)

wherer > 0 andγ = enδ can be chosen arbitrarily.
The optimal value forr follows from straightforward optimization of the RHS of (36):

we first write

Pr {‖Z‖ > r} = Pr

{

1

σ2

n
∑

i=1

Z2
i >

r2

σ2

}

.

We note that the sum1
σ2

∑n
i=1 Z

2
i is a sum ofn i.i.d. standard Gaussian RV’s, which is

exactly aχ2 random variable withn degrees of freedom. The pdf of this RV is well known,
and given by

fχ2
n
(x) =

2−n/2

Γ(n/2)
xn/2−1e−x/2,

whereΓ(·) is the Gamma function. Equipped with this, the RHS of (36) becomes

enδVnr
n +

∫ ∞

r2

σ2

2−n/2

Γ(n/2)
xn/2−1e−x/2.
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Differentiating w.r.t.r and equating to zero gives

nenδVnr
n−1 − 2r

σ2

2−n/2

Γ(n/2)
(r2/σ2)n/2−1e−

r2

2σ2 = 0.

We plug in the expression forVn = πn/2

n
2
Γ(n/2)

and get

nenδ
πn/2

n
2
Γ(n/2)

rn−1 − 2r

σ2

2−n/2

Γ(n/2)
(r2/σ2)n/2−1e−

r2

2σ2 = 0,

which simplifies to the requiredr = σ
√

n(1 + 2δ∗ − 2δ).

B. ML Decoder Based Bound

The second achievability bound is based on the ML decoder (using a different technique
than Poltyrev [3]):

Theorem 5:For anyr > 0 and dimensionn, there exist a latticeΛ with error probability

Pe(n, δ) ≤ PMLB
e (n, δ) , enδVn

∫ r

0

fR(r̃)r̃
ndr̃ + Pr {‖Z‖ > r} , (37)

and the optimal value forr is given by

r∗ = reff = e−δV −1/n
n . (38)

Before the proof, note that this specific value forr gives a new interpretation to the bound:
the termPr {‖Z‖ > r} is exactly the sphere bound (24), and the other term can be thought
of as a ‘redundancy’ term. Making this value small results intightening of the gap between
the bounds.

Proof: Suppose that the zero lattice point was sent, and the noise vector isz ∈ R
n. An

error event occurs (for a ML decoder) when there is a nonzero lattice pointλ ∈ Λ whose
Euclidean distance toz is less than the distance between the zero point and noise vector.
We denote byE the error event, condition on the radiusR of the noise vector and get

Pe(Λ) = Pr{E} =

= ER [Pr {E | ‖Z‖ = R}]

=

∫ ∞

0

fR(r) Pr {E | ‖Z‖ = r} dr

≤
∫ r∗

0

fR(r) Pr {E | ‖Z‖ = r} dr + Pr{‖Z‖ > r∗}, (39)

where the last inequality follows by upper bounding the probability by 1. It holds for any
r∗ > 0.

We examine the conditional error probabilityPr {E | ‖z‖ = r}:

Pr {E | ‖Z‖ = r} = Pr







⋃

λ∈Λ\{0}
‖Z− λ‖ ≤ ‖Z‖

∣

∣

∣

∣

∣

∣

‖Z‖ = r







≤
∑

λ∈Λ\{0}
Pr {‖Z− λ‖ ≤ ‖Z‖ | ‖Z‖ = r}

=
∑

λ∈Λ\{0}
Pr {λ ∈ Ball(Z, ‖Z‖) | ‖Z‖ = r} , (40)
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where the inequality follows from the union bound. Plugginginto the left term in (39) gives
∫ r∗

0

fR(r)
∑

λ∈Λ\{0}
Pr {λ ∈ Ball(Z, ‖Z‖) | ‖Z‖ = r} dr

=
∑

λ∈Λ\{0}

∫ r∗

0

fR(r) Pr {λ ∈ Ball(Z, ‖Z‖) | ‖Z‖ = r} dr. (41)

Note that the last integral has a bounded support (w.r.t.λ) - it is always zero if‖λ‖ ≥ 2r∗.
Therefore we can apply the Minkowski-Hlawka theorem as in Theorem 3 and get that for
anyγ > 0 there exists a latticeΛ with densityγ, whose error probability is upper bounded
by

Pe(Λ) ≤ γ

∫

λ∈Rn

∫ r∗

0

fR(r) Pr {λ ∈ Ball(Z, ‖Z‖) | ‖Z‖ = r} drdλ+ Pr{‖Z‖ > r∗}.

We continue with
∫

λ∈Rn

∫ r∗

0

fR(r) Pr {λ ∈ Ball(Z, ‖Z‖) | ‖Z‖ = r} drdλ

=

∫ r∗

0

fR(r)

∫

λ∈Rn

Pr {λ ∈ Ball(Z, ‖Z‖) | ‖Z‖ = r} dλdr

=

∫ r∗

0

fR(r)

∫

λ∈Rn

E
[

1{λ∈Ball(Z,‖Z‖)}
∣

∣ ‖Z‖ = r
]

dλdr

=

∫ r∗

0

fR(r)E

[
∫

λ∈Rn

1{λ∈Ball(Z,‖Z‖)}dλ

∣

∣

∣

∣

‖Z‖ = r

]

dr

=

∫ r∗

0

fR(r)E [‖Z‖nVn| ‖Z‖ = r] dr

= Vn

∫ r∗

0

fR(r)r
ndr,

and we obtain (37).
To find the optimal value forr (the one that minimizes the RHS of (37)), we see that:

Pr {‖Z‖ > r} =

∫ ∞

r

fR(r̃)dr̃. (42)

Differentiating the RHS of (37) w.r.t.r in order to find the minimum gives

enδVnfR(r)r
n − fR(r) = 0, (43)

andr∗ = reff = e−δV
−1/n
n immediately follows.

C. Equivalence of the ML bound with Poltyrev’s bound

In Theorems 3 and 5 we provided a new upper bounds on the error probability that
were simpler than Poltyrev’s original bound (Theorem 1). For example, in order to compute
Poltyrev’s bound, one has to apply 3D numerical integration, and numerically optimize w.r.t.
r. In contrast, both new bounds requires only a single integration, and the optimal value
for r has a closed-form expression so no numerical optimization is required.
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It appears that the simplicity of the bound in Theorem 5 does not come at a price of a
weaker bound. In fact, it proves to be equivalent to Poltyrev’s bound:

Theorem 6:Poltyrev’s bound (Theorem 1) for the error probability, forthe optimal value
of r, is equal to the ML bound from Theorem 5:

min
r>0

{

enδnVn

∫ 2r

0

wn−1 Pr{Z ∈ D(r, w)}dw + Pr{‖Z‖ > r}
}

=enδVn

∫ r∗

0

fR(ρ)ρ
ndρ+ Pr {‖Z‖ > r∗} , (44)

wherer∗ = reff = e−δV
−1/n
n .

In fact, we can strengthen (44) and show that

γnVn

∫ 2r

0

wn−1Pr{Z ∈ D(r, w)}dw = γVn

∫ r

0

fR(ρ)ρ
ndρ (45)

for any r > 0.
Proof: Appendix A.

Note that proving (45) shows that both bounds are equivalent, regardless of the value ofr.
Consequently, the optimal value forr in Poltyrev’s bound is also found. In [3] the optimal
value (denoted thered

∗
c(n, δ)) was given as the solution to an integral equation, and was

only evaluated asymptotically.

D. The Sphere Bound for Finite Dimensional Infinite Constellations

The sphere bound (25) applies to infinite constellations with fixed Voronoi cell volume.
Poltyrev [3] extended it to general IC’s with the aid of anexpurgationprocess, without
harming the tightness of the error exponent bound. When the dimensionn is finite, the
expurgation process incurs a non-negligible loss (a factorof 2 in the error probability and
in the density). In this section we show that the sphere boundapplieswithout any lossto
general finite dimensional IC’s and average error probability.

We first concentrate on IC’s with some mild regularity assumptions:
Definition 3 (Regular IC’s):An IC S is calledregular, if:
1) There exists a radiusr0 > 0, s.t. for all s ∈ S, the Voronoi cellW (s) is contained in

Ball(s, r0).
2) The densityγ(S) is given by lima→∞

M(S,a)
an

(rather thanlim sup in the original
definition).

For s ∈ S, we denote byv(s) the volume of the Voronoi cell ofs, |W (s)|.
Definition 4 (Average Voronoi cell volume):For a regular ICS, the average Voronoi cell

volume is defined by
v(S) , lim sup

a→∞
Ea[v(s)]. (46)

Lemma 2:For a regular ICS, the average volume is given by the inverse of the density:

γ(S) = 1

v(S) . (47)

Proof: Appendix B.
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For brevity, let SPB(v) denote the probability that the noise vectorZ leaves a sphere of
volumev. With this notation, the sphere bound reads

Pe(s) ≥ SPB(v(s)), (48)

and holds for any individual points ∈ S. We also note the following:
Lemma 3:The equivalent sphere bound SPB(v) is convex in the Voronoi cell volumev.

Proof: Appendix C.
We now show that the above equation holds for the average volume and error probability

as well.
Theorem 7:Let S be a regular (finite dimensional) IC with NLDδ, and letv(S) be the

average Voronoi cell volume ofS (so the density ofS is γ = v(S)−1). Then the average
error probability ofS is lower bounded by

Pe(S) ≥ SPB(v(S)) = SPB(γ−1) = P SB
e (n, δ). (49)

Proof: We start with the definition of the average error probabilityand get

Pe(S) = lim sup
a→∞

Ea[Pe(s)]

(a)

≥ lim sup
a→∞

Ea[SPB(v(s))]

(b)

≥ lim sup
a→∞

SPB(Ea[v(s)])

(c)
= SPB(lim sup

a→∞
Ea[v(s)])

= SPB(v(S)). (50)

(a) follows from the sphere bound for each individual points ∈ S, (b) follows from the
Jensen inequality and the convexity of SPB(·) (Lemma 3), and(c) follows from the fact
that SPB(·) is continuous.
As a consequence, we get that the sphere bound holds for regular IC’s as well, without the
need for expurgation (as in [3]).

So far the discussion was constrained to regular IC’s only. This excludes constellations
with infinite Voronoi regions (e.g. contains points only in half of the space), and also
constellations in which the density oscillates with the cube sizea (and the formal limitγ
does not exist). We now extend the proof of the converse for any IC, without the regularity
assumptions. The proof is based on the following regularization process:

Lemma 4 (Regularization):Let S be an IC with densityγ and average error probability
Pe(S) = ε. Then for anyξ > 0 there exists aregular IC S ′ with densityγ′ ≥ γ/(1 + ξ),
and average error probabilityPe(S ′) = ε′ ≤ ε(1 + ξ).

Proof: Appendix D.
Theorem 8 (Sphere Bound for Finite Dimensional IC’s):Let S be a finite dimensional

IC with densityγ. Then the average error probability ofS is lower bounded by

Pe(S) ≥ SPB(γ−1) = P SB
e (n, δ) (51)

Proof: Let ξ > 0. By the regularization lemma (Lemma 4) there exists a regular IC S ′

with γ′ ≥ γ/(1 + ξ), andPe(S ′) ≤ Pe(S)(1 + ξ). We apply Theorem 7 toS ′ and get that

Pe(S)(1 + ξ) ≥ Pe(S ′) ≥ SPB(γ′−1) ≥ SPB((1 + ξ)γ−1), (52)
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Fig. 2. Numerical evaluation of the bounds forδ = −1.5nat with σ
2 = 1 (0.704db from capacity). From bottom to

top: Solid - the sphere bound (Theorem 2). Gray - the ML bound (Theorem 5). Dashed - Poltyrev’s bound (Theorem 1).
Dot-dashed - the typicality-based achievability bound (Theorem 3).

or
Pe(S) ≥

1

1 + ξ
SPB((1 + ξ)γ−1), (53)

for all ξ > 0. Since SPB(·) is continuous, we may take the limitξ → 0 and get to (51).

E. Numerical Comparison

Here we numerically compare the bounds in this section with Poltyrev’s achievability
bound (Theorem 1). As shown in the previous subsection, the bounds in Theorems 1 and 5
are equivalent. However, as discussed following the statement of Theorem 1 above, in [3]
the suboptimal value forr is used.

We therefore refer to the achievability bound in Theorem 1 (or Theorem 5) withr =√
nσeδ

∗−δ as ‘Poltyrev’s bound’. The results are shown in Figures 2 and3. The exponential
behavior of the bounds (the asymptotic slope of the curves inthe log-scale graph) is
clearly seen in the figures: at NLD aboveδcr, the sphere bound and the ML and Poltyrev’s
achievability bounds have the same exponent, while for NLD below δcr the exponent of
the sphere bound is better. In both cases the typicality bound has a weaker exponent. These
observations are corroborated analytically in Section V below.

V. ANALYSIS AND ASYMPTOTICS AT FIXED NLD δ

In this section we analyze the bounds presented in the previous section with two goals
in mind:
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1) To derive tight analytical bounds (that require no integration) that allow easy evaluation
of the bounds, both upper and lower.

2) To analyze the bounds asymptotically (for fixedδ) and refine the error exponent results
for the setting.

In V-A we present the refined analysis of the sphere bound. While the sphere bound
P SB
e will present the same asymptotic form for anyδ, the ML boundPMLB

e has a different
behavior above and belowδcr. In V-B we focus on the ML bound aboveδcr. The tight
results from V-A and V-B reveal that (aboveδcr) the optimal error probabilityPe(n, δ) is
known asymptotically up to a constant. This is discussed in V-C. In V-D we focus on the
ML bound belowδcr, and in V-E we consider the special case ofδ = δcr. In V-F we study
the asymptotics of the typicality boundP T

e (n, δ) and in V-G we analyze Poltyrev’s bound,
i.e. the ML bound withr set tor =

√
nσeδ

∗−δ instead ofreff .

The fact that the ML bound behaves differently above and below δcr can be explained
by the following. Consider the first term in the ML bound,enδVn

∫ reff
0

fR(r)r
ndr. Loosely

speaking, the value of this integral is determined (for large n) by the value of the integrand
with the most dominant exponent. Whenδ > δcr, the dominating value for the integral is
at r = reff . For δ < δcr, the dominating value is approximately atr =

√
2nσ2. Note that

this value does not depend onδ, so the dependence inδ comes from the termenδ alone,
and the exponential behavior of the bound is of a straight line. Since we are interested in
more than merely the exponential behavior of the bound, we use more refined machinery
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in order to analyze the bounds.
Poltyrev [3] used an expurgation technique in order to improve the error exponent for

lower NLD values (belowδex = δ
∗− log 2). The refined tools used here can also be applied

to the expurgation bound in order to analyze its sub-exponential behavior. However, in this
region the ratio between the upper and lower bounds grows exponentially, and therefore the
sub-exponential analysis of the expurgation bound is of little interest and is not included in
this paper.

A. Analysis of the Sphere Bound

The sphere bound (Theorem 2) is a simple bound based on the geometry of the coding
problem. However, the resulting expression, given by an integral that has no elementary
form, is generally hard to evaluate. There are several approaches for evaluating this bound:

• Numeric integration is only possible for small - moderate values ofn. Moreover, the
numeric evaluation does not provide any hints about the asymptotical behavior of the
bound.

• Tarokh et al. [15] were able to represent the integral in the bound as a sum ofn/2
elements. This result indeed helps in numerically evaluating the bound, but does not
help in understanding its asymptotics.

• Poltyrev [3] used large-deviation techniques to derive thesphere packing error exponent,
i.e.

lim
n→∞

−1

n
logPe(n, δ) ≤ Esp(δ) =

1

2

[

e2(δ
∗−δ) − 1− 2(δ∗ − δ)

]

. (54)

The error exponent, as its name suggests, only hints on the exponential behavior of the
bound, but does not aid in evaluating the bound itself or in more precise asymptotics.

Here we derive non-asymptotic, analytical bounds based on the sphere bound. These
bounds allow easy evaluation of the bound, and give rise to more precise asymptotic analysis
for the error probability (whereδ is fixed).

Theorem 9:Let r∗ , reff = e−δV
−1/n
n andρ∗ , r2eff

nσ2 .
Then for any NLDδ < δ

∗ and for any dimensionn > 2, the sphere boundP SB
e (n, δ) is

lower bounded by

P SB
e (n, δ) ≥ en(δ

∗−δ)en/2e−
n
2
ρ∗ · eΥ2

2

√

n2π

n− 2
Q (Υ) (55)

≥ en(δ
∗−δ)en/2e−

n
2
ρ∗

ρ∗ − 1 + 2
n

(

1

1 + Υ−2

)

, (56)

upper bounded by

P SB
e (n, δ) ≤ en(δ

∗−δ)en/2e−
n
2
ρ∗

ρ∗ − 1 + 2
n

, (57)

and for fixedδ, given asymptotically by

P SB
e (n, δ) = e−nEsp(δ)

(nπ)−
1
2
e2(δ

∗
−δ)

e2(δ
∗−δ) − 1

(

1 +O

(

log2 n

n

))

. (58)

Some notes regarding the above results:
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• Eq. (55) provides a lower bound in terms of theQ function, and (56) gives a slightly
looser bound, but is based on elementary functions only.

• The upper bound (57) on the sphere bound has no direct meaningin terms of bounding
the error probabilityPe(n, δ) (since the sphere bound is a lower bound). However, it
used for evaluating the sphere bound itself (i.e. to derive (58)), and it will prove useful
in upper boundingPe(n, δ) in Theorem 10 below.

• A bound of the type (57), i.e. an upper bound on the probability that the noise leaves
a sphere, can be derived using the Chernoff bound as was done by Poltyrev [3,
Appendix B]. However, while Poltyrev’s technique indeed gives the correct exponential
behavior, it falls short of attaining the sub-exponential terms, and therefore (57) is
tighter. Moreover, (57) leads to the exact precise asymptotics (58).

• (58) gives an asymptotic bound that is significantly tighterthan the error exponent term
alone. The asymptotic form (58) applies to (55), (56) and (57) as well.

• Note thatρ∗ is a measure that can also quantify the gap from capacity (seeII-B). It is
an alternative to∆δ = δ

∗ − δ (or to µ = e2∆δ). The measures are not equivalent, but
asn → ∞ we haveρ∗ = e2(δ

∗−δ) + o(1), see (65) and (66) below.

Proof: We write the sphere bound explicitly:

P SB
e (n, δ) = Pr{‖Z‖ > r∗}

=

∫ ∞

r∗
fR(r

′)dr′

=

∫ ∞

r∗2/σ2

fχ2
n
(ρ)dρ

=
2−

n
2

Γ
(

n
2

)

∫ ∞

r∗2/σ2

ρ
n
2
−1e−ρ/2dρ

=
2−

n
2 nn/2

Γ
(

n
2

)

∫ ∞

ρ∗
ρ

n
2
−1e−nρ/2dρ. (59)

In order to evaluate the integral in (59) we require the following lemma.
Lemma 5:Let n > 2 andx > 1− 2

n
. Then the integral

∫∞
x

ρ
n
2
−1e−nρ/2dρ can be bounded

from above by
∫ ∞

x

ρ
n
2
−1e−nρ/2dρ ≤ 2x

n
2 e−

nx
2

n(x− 1 + 2
n
)

(60)

and from below by
∫ ∞

x

ρ
n
2
−1e−nρ/2dρ ≥ 2x

n
2 e−

nx
2 exp

[

Υ2

2

]√

π

n− 2
Q (Υ) (61)

≥ 2x
n
2 e−

nx
2

n(x− 1 + 2
n
)

(

1

1 + Υ−2

)

, (62)

≥ 2x
n
2 e−

nx
2

n(x− 1 + 2
n
)

(

1− 1

Υ2

)

, (63)

whereΥ ,
n(x−1+ 2

n
)√

2(n−2)
.
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Proof: Appendix E.
We continue the proof of the theorem: (55) follows by plugging (61) into (59) with

x = ρ∗. It can be shown thatρ∗ ≥ 1 for all δ < δ
∗ so the conditionx > 1− 2

n
is met. (56)

follows similarly using (62) and the definition ofδ∗. The upper bound (57) follows using
(60).

To derive (58) we first note the following asymptotic results:

Vn =
πn/2

n
2
Γ(n

2
)
=

(

2πe

n

)n/2
1√
nπ

(

1 +O

(

1

n

))

, (64)

ρ∗ =
e−2δV

−2/n
n

nσ2
= e2(δ

∗−δ)(nπ)1/n
(

1 +O

(

1

n2

))

(65)

= e2(δ
∗−δ)

(

1 +
1

n
log(nπ) +O

(

log2 n

n2

))

, (66)

Υ =
n(ρ∗ − 1 + 2

n
)

√

2(n− 2)
=

√

n

2

(

e2(δ
∗−δ) − 1

)

(

1 +O

(

log n

n

))

= Θ(
√
n). (67)

For (64) see Appendix F. (65) follows from (64) and the definition of δ∗. (66) follows by
writing (nπ)1/n = e

1
n
log(nπ) and the Taylor approximation. (67) follows directly from (66).

We evaluate the terme−
n
2
ρ∗ in (56) and (57):

e−
n
2
ρ∗ = exp

[

−n

2
e2(δ

∗−δ)

(

1 +
1

n
log(nπ) +O

(

log2 n

n2

))]

= e−
n
2
e2(δ

∗
−δ)

exp

[

−1

2
e2(δ

∗−δ) log(nπ) +O

(

log2 n

n

)]

= e−
n
2
e2(δ

∗
−δ)

(nπ)−
1
2
e2(δ

∗
−δ)

(

1 +O

(

log2 n

n

))

. (68)

Plugging (66), (67) and (68) into (56) and (57), along with the definition ofEsp(δ), leads
to the desired (58).

In Fig. 4 we demonstrate the tightness of the bounds and precise asymptotics of Theo-
rem 9. In the figure the sphere bound is presented with its bounds and approximations. The
lower bound (55) is the tightest lower bound (but is based on the non-analyticQ function).
The analytic lower bound (56) is slightly looser than (55), but is tight enough in order
to derive the precise asymptotic form (58). The upper bound (57) of the sphere bound is
also tight. The error exponent itself (without the sub-exponential terms) is clearly way off,
compared to the precise asymptotic form (58).

B. Analysis of the ML Bound Aboveδcr

In order to derive the random coding exponentEr(δ), Poltyrev’s achievability bound
(Theorem 1) was evaluated asymptotically by setting a suboptimal value

√
nσe−(δ∗−δ) for

the parameterr. While setting this value still gives the correct exponential behavior of the
bound, a more precise analysis (in the current and followingsubsections) using the optimal
value forr as in Theorem 5 gives tighter analytical and asymptotic results.
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Fig. 4. Numerical evaluation of the sphere bound and its bounds and approximation in Theorem 9 vs the dimension
n. Hereδ = −1.5nat andσ2 = 1 (0.704db from capacity). The tight bounds (55), (56) and (57) lead to the asymptotic
form (58). The error exponent term alone is evidently way offcompared to (58).

Theorem 10:Let r∗ , reff = e−δV
−1/n
n andρ∗ , r2eff

nσ2 . Then for any NLDδ and for any
dimensionn > 2 where1− 2

n
< ρ∗ < 2− 2

n
, the ML boundPMLB

e (n, δ) is upper bounded
by

PMLB
e (n, δ) ≤ en(δ

∗−δ)en/2e−
n
2
ρ∗

(

2− ρ∗ − 2
n

) (

ρ∗ − 1 + 2
n

) , (69)

lower bounded by

PMLB
e (n, δ) ≥ en(δ

∗−δ)en/2e−nρ∗/2

[

eΨ
2/2

√

nπ

2ρ∗
Q(Ψ) + eΥ

2/2

√

n2π

n− 2
Q (Υ)

]

(70)

≥ en(δ
∗−δ)en/2e−nρ∗/2

[

1

2− ρ∗ + 2
n

· 1

1 + Ψ−2
+

1

ρ∗ − 1 + 2
n

· 1

1 + Υ−2

]

,

(71)

and forδcr < δ < δ
∗, given asymptotically by

PMLB
e (n, δ) =

e−nEr(δ)(nπ)−
1
2
e2(δ

∗
−δ)

(2− e2(δ
∗−δ)) (e2(δ

∗−δ) − 1)

(

1 +O

(

log2 n

n

))

. (72)

Some notes regarding the above results:
• For largen, the conditionρ∗ < 2 − 2

n
translates to the fact thatδcr < δ. ρ∗ > 1 − 2

n
holds for allδ < δ

∗. The case ofδ ≤ δ
∗ is addressed later on in the current section.
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• The lower bounds (70) and (71) have no direct meaning in termsof bounding the error
probabilityPe(n, δ) (since they lower bound an upper bound). However, they are useful
for evaluating the achievability bound itself (i.e. to derive (72)).

• (72) gives an asymptotic bound that is significantly tighterthan the error exponent
term alone. It holds above theδcr only, where belowδcr and exactly atδcr we have
Theorems 11 and 12 below. The asymptotic form (72) applies to(69), (70) and (71)
as well.
Proof: The proof relies on a precise analysis of the ML bound:

enδVn

∫ r∗

0

fR(r)r
ndr + Pr {‖Z‖ > r∗} . (73)

The second term is exactly the sphere bound, which allows theusage of the analysis of
Theorem 9. We therefore proceed with analyzing the first term:

enδVn

∫ r∗

0

fR(r)r
ndr = enδVnσ

n

∫ r∗

σ

0

fχn(y)ρ
ndy

= enδVnσ
n 2

1−n
2

Γ
[

n
2

]

∫ r∗

σ

0

e−y2/2y2n−1dy

= enδVnσ
n 2−

n
2

Γ
[

n
2

]

∫ r∗2

σ2

0

e−t/2tn−1dt

=
n

2
en(δ+δ

∗)V 2
n e

n/2σ2nnn

∫ ρ∗

0

e−nρ/2ρn−1dρ (74)

We need the following lemma:
Lemma 6:Let 0 < x < 2− 2

n
. Then the integral

∫ x

0
e−nρ/2ρn−1dρ is upper bounded by

∫ x

0

e−nρ/2ρn−1dρ ≤ 2xne−nx/2

n
(

2− x− 2
n

)

(

1− e
−n

(

1− 1
n
−x

2

)

)

, (75)

and is lower bounded by
∫ x

0

e−nρ/2ρn−1dρ ≥ xne−nx/2eΨ
2/2

√

2π

nx
Q(Ψ) (76)

≥ 2xne−nx/2

n
(

2− x+ 2
n

) · 1

1 + Ψ−2
, (77)

whereΨ ,

√
n
(

2−x+
2
n

)

2
√
x

.
Proof: Appendix E.

To prove the upper bound (69) we use (75) withx = ρ∗ to bound (74):

enδVn

∫ r∗

0

fR(r)r
ndr =

n

2
en(δ+δ

∗)V 2
n e

n/2σ2nnn

∫ ρ∗

0

e−nρ/2ρn−1dρ (78)

≤ n

2
en(δ+δ

∗)V 2
n e

n/2σ2nnn · 2ρ∗ne−
n
2
ρ∗

n
(

2− ρ∗ − 2
n

) (79)

=
en(δ

∗−δ)en/2e−
n
2
ρ∗

2− ρ∗ − 2
n

. (80)
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We combine the above with the upper bound (57) on the sphere bound and get

enδVn

∫ r∗

0

fR(r)r
ndr + Pr {‖Z‖ > r∗} ≤ en(δ

∗−δ)en/2e−
n
2
ρ∗

2− ρ∗ − 2
n

+
en(δ

∗−δ)en/2e−
n
2
ρ∗

ρ∗ − 1 + 2
n

, (81)

which immediately leads to (69).
In order to attain the lower bound (70) we use (76) withx = ρ∗ and get thatenδVn

∫ r∗

0
fR(r)r

ndr
is lower bounded by

n

2
en(δ+δ

∗)V 2
n e

n/2σ2nnn · ρ∗ne−nρ∗/2eΨ
2/2

√

2π

nρ∗
Q(Ψ)

= en(δ
∗−δ)en/2e−nρ∗/2 · eΨ2/2

√

nπ

2ρ∗
Q(Ψ).

Eq. (70) follows by using the lower bound (55) on the sphere bound. The analytic bound
(71) follows from (77).

The asymptotic form (72) follows by the fact thatΨ = Θ(
√
n), and by plugging (66)

and (67) into the analytical bounds (69) and (71).
In Fig. 5 we demonstrate the tightness of the bounds and precise asymptotics in Theo-

rem 10. In the figure the ML bound is presented with its bounds and approximations. The
image is similar to the Fig. 4, referring to the sphere bound.The lower bound (70) is the
tightest lower bound (but is based on the non-analyticQ function). The analytic lower bound
(71) is slightly looser than (70), but is tight enough in order to derive the precise asymptotic
form (72). The upper bound (69) of the sphere bound is also tight. The error exponent itself
(without the sub-exponential terms) is clearly way off, compared to the precise asymptotic
form (72).

C. Tightness of the Bounds Aboveδcr

Corollary 1: For δcr < δ < δ
∗ the ratio between the upper and lower bounds onPe(n, δ)

converges to a constant, i.e.

PMLB
e (n, δ)

P SB
e (n, δ)

=
1

(2− e2(δ
∗−δ))

+O

(

logn

n

)

. (82)

Proof: The proof follows from Theorems 9 and 10. Note that the resultis tighter than
the ratio of the asymptotic forms (58) and (72) (i.e.O( logn

n
) and notO( log

2 n
n

)) since the
term that contributes thelog2 n term is e−

n
2
ρ∗ which is common for both upper and lower

bounds.

D. The ML Bound Belowδcr

Here we provide the asymptotic behavior of the ML bound at NLDvaluesbelowδcr.
Theorem 11:For anyδ < δcr, the ML bound can be approximated by

PMLB
e (n, δ) =

e−nEr(δ)

√
2πn

(

1 +O
(

1
n

))

. (83)

Proof: We start as in the proof of Theorem 5 to have

enδVn

∫ r∗

0

fR(r)r
ndr =

n

2
enδV 2

n σ
n(2π)−

n
2 nn

∫ ρ∗

0

e−nρ/2ρn−1dρ. (84)
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Fig. 5. Numerical evaluation of the ML bound and its bounds and approximation in Theorem 10 vs the dimensionn.
Hereδ = −1.5nat (0.704db from capacity). The tight bounds (69), (70) and (71) lead to the asymptotic form (72). The
error exponent term alone is evidently way off compared to (72).

We continue by approximating the integral as follows:
Lemma 7:Let x > 2. Then the integral

∫ x

0
e−nρ/2ρn−1dρ can be approximated by

∫ x

0

e−nρ/2ρn−1dρ =

√

2π

n
e−n2n

(

1 +O
(

1
n

))

. (85)

Proof: The proof relies on the fact that the integrand is maximized at the interior of
the interval[0, x]. Note that the result does not depend onx.

We first rewrite the integral to the form
∫ x

0

1

ρ
e−n(ρ/2−log ρ)dρ =

∫ x

0

g(ρ)e−nG(ρ)dρ, (86)

whereg(ρ) , 1
ρ

andG(ρ) , ρ/2− log ρ.
Whenn grows, the asymptotical behavior of the integral is dominated by the value of

the integrand at̃ρ = 2 (which minimizesG(ρ)). This is formalized by Laplace’s method of
integration (see, e.g. [20, Sec. 3.3]):

∫ x

0

g(ρ)e−nG(ρ)dρ = g(ρ̃)e−nG(ρ̃)

√

2π

n∂2G(ρ̃)
∂ρ2

|ρ=ρ̃

(

1 +O
(

1
n

))

=
1

2
en(1−log 2)

√

2π

n · 1
4

(

1 +O
(

1
n

))

,
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Fig. 6. Numerical evaluation of the ML bound and its approximation in Theorem 11 vs the dimensionn. Hereδ =
−1.8nat (3.31db from capacity). The precise asymptotic form (83) isclearly tighter than the error exponent only.

which leads to (85).
Before we apply the result of the lemma to (84), we note that wheneverδ is below the

critical δcr, ρ∗ > e2(δ
∗−δ) = 2e2(δcr−δ) > 2 for all n. Therefore for alln we have

∫ 2e2(δcr−δ)

0

e−nρ/2ρn−1dρ ≤
∫ ρ∗

0

e−nρ/2ρn−1dρ ≤
∫ ∞

0

e−nρ/2ρn−1dρ. (87)

We apply Lemma 7 to both sides of the equation and conclude that
∫ ρ∗

0

e−nρ/2ρn−1dρ =

√

2π

n
e−n2n

(

1 +O
(

1
n

))

. (88)

The proof of the theorem is completed using the approximation (64) for Vn.
It should be noted that the sphere bound part of the achievability bound vanishes with a

stronger exponent (Esp(δ)), and therefore does not contribute to the asymptotic value.
In Fig. 6 we demonstrate the tightness of the precise asymptotics in Theorem 11. Here

too the precise asymptotic form is significantly tighter than the error exponent only.

E. The ML Bound atδcr

In previous subsections we provided asymptotic forms for the upper bound onPe(n, δ),
for δ > δcr and for δ < δcr (Theorems 10 and 11 respectively). Unfortunately, neither
theorem holds forδcr exactly. We now analyze the upper bound atδcr, and show that its
asymptotic form is different at this point. As a consequence, at the critical NLD, the ratio
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Fig. 7. Numerical evaluation of the ML bound atδ = δcr (3.01db from capacity) and its approximations in Theorem 12
vs the dimensionn. The asymptotic form (89) is tighter than the simpler (90). Both forms approximate the true value of
the ML bound better than the error exponent term alone.

between the upper and lower bounds onPe(n, δ) is of the order of
√
n (this ratio above

δcr is a constant, and belowδcr the ratio increases exponentially since the error exponents
are different).

Theorem 12:At δ = δcr, the ML bound is given asymptotically by

PMLB
e (n, δcr) = e−nEr(δcr)

1

2π

[
√

π

2n
+

log(nπe2)

n

]

(

1 +O
(

log2 n
n

))

(89)

= e−nEr(δcr)
1√
8πn

(

1 +O
(

logn√
n

))

(90)

Proof: Appendix G.
In Fig. 7 we demonstrate the tightness of the precise asymptotics of Theorem 12.

F. Asymptotic Analysis of the Typicality Bound

The typicality upper bound onPe(n, δ) (Theorem 3) is typically weaker than the ML-
based bound (Theorem 5). In fact, it admits a weaker exponential behavior than the random
coding exponentEr(δ). Define thetypicality exponentEt(δ) as

Et(δ) , δ
∗ − δ − 1

2
log(1 + 2(δ∗ − δ)). (91)
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Fig. 8. Error exponents for the unconstrained AWGN channel.The typicality error exponentEt(δ) (dot-dashed) vs. the
random coding exponentEr(δ) (dotted) and the sphere packingEsp(δ) (solid). The noise varianceσ2 is set to 1.

Theorem 13:For anyδ < δ
∗, the typicality upper bound is given asymptotically by

P TB
e (n, δ) =

e−nEt(δ)

√
nπ

· 1 + 2(δ∗ − δ)

2(δ∗ − δ)

(

1 +O

(

1

n

))

(92)

Proof: Appendix H.
The error exponentEt(δ) is illustrated in Figure 8. As seen in the figure,Et(δ) is lower

thanEr(δ) for all δ.

G. Asymptotic Analysis ofPMLB
e with Poltyrev’sr =

√
nσeδ

∗−δ

In Poltyrev’s proof of the random coding exponent [3], the suboptimal value forr was
used, cf. Section IV above. Instead of the optimalr = reff = e−δV

1/n
n , he choser =√

nσeδ
∗−δ. In Figures 2 and 3 above we demonstrated how this suboptimalchoice of r

affects the ML bound at finiten. In the figures, it is shown that forδ = −1.5nat (above
δcr) the loss is more significant than forδ = −2nat (below δcr). Here we utilize the
techniques used in the current section in order to provide asymptotic analysis of the ML
bound with the suboptimalr, and by that explain this phenomenon.

Theorem 14:The ML boundPMLB
e , with r =

√
nσeδ

∗−δ, denotedP̃MLB
e (n, δ), is given

asymptotically as follows:
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For δcr < δ < δ
∗:

P̃MLB
e (n, δ) = e−nEr(δ)

[

1

nπ(2− e2(δ
∗−δ))

+
1√

nπ(e2(δ
∗−δ) − 1)

]

(

1 +O
(

1
n

))

(93)

= e−nEr(δ)
1√

nπ(e2(δ
∗−δ) − 1)

(

1 +O
(

1√
n

))

. (94)

For δ < δcr:

P̃MLB
e (n, δ) = e−nEr(δ)

1√
2πn

(

1 +O
(

1
n

))

. (95)

For δ = δcr:

P̃MLB
e (n, δcr) = e−nEr(δcr)

1√
πn

[

1 +
1√
8

]

(

1 +O
(

1
n

))

(96)

Notes:
• For δ > δcr, P̃MLB

e (n, δ) is indeed asymptotically worse thanPMLB
e with the optimal

r = reff (37), see (72). Specifically, the choice ofr =
√
nσeδ

∗−δ only balances the
exponents of the two expressions of the bound (37), while leaving the sub-exponential
terms unbalanced - see (93). The optimal selectionr = reff balances the sub-exponential
terms to the order ofn− 1

2
e2(δ

∗
−δ)

, see Theorem 10. This in fact quantifies the asymptotic
gap between the bounds, as seen in the Fig. 2.

• For δ < δcr, the selection of the suboptimalr has no asymptotic effect, as seen by
comparing (95) and (83). This corroborates the numerical findings presented in Fig. 3.

• For δ = δcr the asymptotic form of the bound is changes by a constant (compare (96)
and (89),(90)), and the correction term in the approximation tighter.
Proof: Appendix I.

VI. A SYMPTOTICS FORFIXED ERROR PROBABILITY

In the previous section we were interested in the asymptoticbehavior ofPe(n, δ) when
the NLD δ is fixed. We now turn to look at a related scenario where the error probabilityε
is fixed, and we are interested in the asymptotic behavior of the optimal achievable NLD,
denotedδε(n), with n → ∞. This setting parallels the channel dispersion type results
[7][6][21, Problem 2.1.24], and is strongly related to the dispersion of the power constrained
AWGN channel [8][6].

A. The Dispersion of Infinite Constellations

Let ε > 0 denote a fixed error probability value. Clearly, for anyε, δε(n) approaches the
optimal NLD δ

∗ asn → ∞. Here we study the asymptotic behavior of this convergence.
Theorem 15:For a fixed error probabilityε, the optimal NLDδε(n) is given, for large

enoughn, by

δε(n) = δ
∗ −

√

1

2n
Q−1(ε) +

1

2n
log n+O

(

1

n

)

. (97)

The proof is based on an asymptotic analysis of the finite-dimensional bounds derived
in Section IV. Specifically, the converse bound (an upper bound in (97)) is based on the
sphere bound (4). The achievability part (a lower bound in (97)) is based on the ML bound
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Fig. 9. Bounds and approximations of the optimal NLDδε(n) for error probabilityε = 0.01. Here the noise variance
σ
2 is set to1.

(37). The weaker typicality bound is also useful for deriving a result of the type (97), but
in a slightly weaker form - the typicality bound can only leadto

δε(n) ≥ δ
∗ −

√

1

2n
Q−1(ε) +O

(

1

n

)

. (98)

In Fig. 9 we show the bounds onδε(n) that are derived from the finite dimensional
bounds onPe(n, δ) given in Sec. IV, along with the asymptotic form (97), derived in this
section, which tightly approximatesδε(n). In addition, the term (98) is also depicted, which
only loosely approximatesδε(n). The chosen error probability for the figure isε = 0.01.

Before proving the theorem, let us discuss the result. By thesimilarity of Equations (1)
and (97) we can isolate the constant1

2
and identify it as the dispersion of the unconstrained

AWGN setting. This fact can be intuitively explained from several directions.
One interesting property of the channel dispersion theorem(1) is the following connection

to the error exponent. Under some mild regularity assumptions, the error exponent can be
approximated near the capacity by

E(R) ∼= (C −R)2

2V
, (99)

whereV is the channel dispersion. The fact that the error exponent can be approximated by
a parabola with second derivative1

V
was already known to Shannon (see [6, Fig. 18]). This
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property holds for DMC’s and for the power constrained AWGN channel and is conjectured
to hold in more general cases. Note, however, that while the parabolic behavior of the
exponent hints that the gap to the capacity should behave asO

(

1√
n

)

, the dispersion theorem
cannot be derived directly from the error exponent theory. Even if the error probability was
given bye−nE(R) exactly, (1) cannot be deduced from (99) (which holds only inthe Taylor
approximation sense).

Analogously to (99), we examine the error exponent for the unconstrained Gaussian
setting. For NLD values above the critical NLDδcr (but belowδ

∗), the error exponent is
given by [3]:

E(δ) =
e−2δ

4πeσ2
+ δ +

1

2
log 2πσ2. (100)

By straightforward differentiation we get that the second derivative (w.r.t.δ) of E(δ, σ2)
at δ = δ

∗ is given by 2, so according to (99), it is expected that the dispersion forthe
unconstrained AWGN channel will be1

2
. This agrees with our result (97) and its similarity

to (1), and extends the correctness of the conjecture (99) tothe unconstrained AWGN setting
as well. It should be noted, however, that our result provides more than just proving the
conjecture: there also exist examples where the error exponent is well defined (with second
derivative), but a connection of the type (99) can only be achieved asymptotically with
ε → 0 (see, e.g. [22]). Our result (97) holds for any finiteε, and also gives the exact1

n
log n

term in the expansion.
Another indication that the dispersion for the unconstrained setting should be1

2
comes

from the connections to the power constrained AWGN. While the capacity1
2
log(1 + P ),

whereP denotes the channel SNR, is clearly unbounded withP , the form of the error
exponent curve does have a nontrivial limit asP → ∞. In [2] it was noticed that this limit
is the error exponent of the unconstrained AWGN channel (sometimes termed the ‘Poltyrev
exponent’), where the distance to the capacity is replaced by the NLD distance toδ∗. By
this analogy we examine the dispersion of the power constrained AWGN channel at high
SNR. In [6] the dispersion was found, given (innat2 per channel use) by

VAWGN =
P (P + 2)

2(P + 1)2
. (101)

This term already appeared in Shannon’s 1959 paper on the AWGN error exponent [5],
where its inverse is exactly the second derivative of the error exponent at the capacity (i.e.
(99) holds for the AWGN channel). It is therefore no surprisethat by takingP → ∞,
we get the desired value of1

2
, thus completing the analogy between the power constrained

AWGN and its unconstrained version. This convergence is quite fast, and is tight for SNR
as low as10dB (see Fig. 10).

B. A Key Lemma

In order to prove Theorem 15 we need the following lemma regarding the norm of a
Gaussian vector.

Lemma 8:Let Z = [Z1, ..., Zn]
T be a vector ofn zero-mean, independent Gaussian

random variables, each with meanσ2. Let r > 0 be a given arbitrary radius. Then the
following holds for any dimensionn:

∣

∣

∣

∣

Pr{‖Z‖ > r} −Q

(

r2 − nσ2

σ2
√
2n

)
∣

∣

∣

∣

≤ 6T√
n
, (102)



32 SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY

-30 -20 -10 0 10 20 30
0.0

0.1

0.2

0.3

0.4

0.5

0.6

SNR @dBD

D
is

pe
rs

io
n@

na
ts2
�c

ha
nn

el
us

eD

Fig. 10. The power-constrained AWGN dispersion (101) (solid) vs. the unconstrained dispersion (dashed)

where

T = E

[

∣

∣

∣

∣

X2 − 1√
2

∣

∣

∣

∣

3
]

≈ 3.0785, (103)

for a Standard Gaussian RVX.
Proof: The proof relies on the convergence of a sum of independent random variables

to a Gaussian random variable, i.e. the central limit theorem. We first note that

Pr{‖Z‖ > r} = Pr

{

n
∑

i=1

Z2
i > r2

}

. (104)

Let Yi =
Z2
i −σ2

σ2
√
2

. It is easy to verify thatE[Yi] = 0 and thatVAR[Yi] = 1. Let Sn ,
1√
n

∑n
i=1 Yi. Note thatSn also has zero mean and unit variance. It follows that

Pr

{

n
∑

i=1

Z2
i ≥ r2

}

= Pr

{

n
∑

i=1

Z2
i − σ2

σ2
√
2

≥ r2 − nσ2

σ2
√
2

}

= Pr

{

n
∑

i=1

Yi ≥
r2 − nσ2

σ2
√
2

}

= Pr

{

Sn ≥ r2 − nσ2

σ2
√
2n

}

. (105)

Sn is a normalized sum of i.i.d. variables, and by the central limit theorem converges to a
standard Gaussian random variables. The Berry-Esseen theorem (see Appendix J) quantifies
the rate of convergence in the cumulative distribution function sense. In the specific case
discussed in the lemma we get
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∣

∣

∣

∣

Pr

{

Sn ≥ r2 − nσ2

σ2
√
2n

}

−Q

[

r2 − nσ2

σ2
√
2n

]
∣

∣

∣

∣

≤ 6T√
n
, (106)

whereT = E[|Yi|3]. Note thatT is independent ofσ2, finite, and can be evaluated numer-
ically to about3.0785.

C. Proof of Theorem 15

Proof of Direct part:
Let ε denote the required error probability. We shall prove the existence of an IC (more

specifically, a lattice) with error probability at mostε and NLD satisfying (97).
It is instructive to first prove a slightly weaker version of (97) based on the typicality

decoder (Theorem 3). While easier to derive, this will show the existence of lattices with

NLD δ = δ
∗−
√

1
2n
Q−1(ε)+O

(

1
n

)

. Proving the stronger result (97) is more technical and
will proven afterwards using the ML achievability bound (Theorem 5).

Recall the achievability bound in Theorem 3: for anyr > 0 there exist lattices with NLD
δ and error probabilityPe that is upper bounded by

Pe ≤ γVnr
n + Pr {‖Z‖ > r} . (107)

We determiner s.t. Pr(‖Z‖ > r) = ε
[

1− 1√
n

]

and γ s.t. γVnr
n = ε√

n
. This way it is

assured that the error probability is not greater than the requiredε
[

1− 1√
n

]

+ ε√
n
= ε. Now

defineαn s.t. r2 = nσ2(1 + αn) (note thatr implicitly depends onn as well).
Lemma 9:αn, defined above, is given by

αn =

√

2

n
Q−1(ε) +O

(

1

n

)

. (108)

Proof: By construction,r is chosen s.t.

Pr(‖Z‖2 > r2) = ε

[

1− 1√
n

]

. (109)

By the definition ofαn,

Pr(‖Z‖2 > nσ2(1 + αn)) = ε

[

1− 1√
n

]

. (110)

By Lemma 8,

Pr(‖Z‖2 > nσ2(1 + αn)) = Q

(

nσ2(1 + αn)− nσ2

σ2
√
2n

)

+O

(

1√
n

)

= Q

(
√

n

2
αn

)

+O

(

1√
n

)

. (111)

Combined with (110), we get

ε

[

1− 1√
n

]

= Q

(
√

n

2
αn

)

+O

(

1√
n

)

, (112)
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or

ε+O

(

1√
n

)

= Q

(
√

n

2
αn

)

. (113)

TakingQ−1(·) of both sides, we get
√

n

2
αn = Q−1

(

ε+O

(

1√
n

))

. (114)

By the Taylor approximation ofQ−1(ε+ x) aroundx = 0, we get
√

n

2
αn = Q−1 (ε) +O

(

1√
n

)

, (115)

or

αn =

√

2

n
Q−1 (ε) +O

(

1

n

)

, (116)

as required.
So far, we have shown the existence of a latticeΛ with error probability at mostε. The

NLD is given by

δ =
1

n
log γ

=
1

n
log

ε

Vnrn
√
n

= −1

n
log Vn − log r − log n

2n
+

1

n
log ε

= −1

n
log Vn −

1

2
log[nσ2(1 + αn)]−

log n

2n
+

1

n
log ε.

Vn can be approximated by (see Appendix F) by

1

n
log Vn =

1

2
log

2πe

n
− 1

2n
logn +O

(

1

n

)

. (117)

We therefore have

δ = −1

2
log(2πeσ2)− 1

2
log(1 + αn) +O

(

1

n

)

(118)

(a)
= δ

∗ − 1

2
log(1 + αn) +O

(

1

n

)

(119)

(b)
= δ

∗ − 1

2
αn +O

(

1

n

)

(120)

(c)
= δ

∗ −
√

1

2n
Q−1(ε) +O

(

1

n

)

, (121)

where(a) follows from the definition ofδ∗, (b) follows from the Taylor approximation for
log(1 + αn) aroundαn = 0 and from the fact thatαn = O(1/

√
n), and (c) follows from

Lemma 9. This completes the achievability part based on the typicality decoder.
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In order to prove the stronger achievability result that fits(97) we follow the same steps
with the ML achievability bound. By Theorem 5 we get that for any r > 0 there exist a
lattice with densityγ and error probability upper bounded by

Pe ≤ γVn

∫ r

0

fR(r̃)r̃
ndr̃ + Pr {‖Z‖ > r} . (122)

Now determiner s.t. Pr(‖Z‖ > r) = ε
[

1− 1√
n

]

and γ s.t. γVn

∫ r

0
fR(r̃)r̃

ndr̃ = ε√
n
.

Again, it is assured that the error probability is upper bounded byε. Defineαn s.t. r2 =
nσ2(1 + αn).

The resulting density is given by

γ =
ε√

nVn

∫ r

0
fR(r̃)r̃ndr̃

, (123)

and the NLD by

δ =
1

n
log γ

=
1

n
log ε− 1

n
log

[√
nVn

∫ r

0

fR(r̃)r̃
ndr̃

]

=
1

n
log ε− 1

2n
logn− 1

n
log Vn −

1

n
log

∫ r

0

fR(r̃)r̃
ndr̃

= −1

2
log

2πe

n
− 1

n
log

∫

√
n(1+αn)

0

fR(r̃)r̃
ndr̃ +O

(

1

n

)

. (124)

where the last equality follows from the approximation (117) for Vn.

We repeat the derivation as in Eq. (74) wherer∗ is replaced byr =
√

nσ2(1 + αn) and
have

∫

√
nσ2(1+αn)

0

fR(r̃)r̃
ndr̃ = σn2

−n/2nn

Γ
[

n
2

]

∫ 1+αn

0

e−nr̃/2r̃n−1dr̃

≤ σn2
−n/2nn

Γ
[

n
2

]

2(1 + αn)
ne−n(1+αn)/2

n
(

1− αn − 2
n

)

= σn2
−n/2nn

Γ
[

n
2

]

2en log(1+αn)e−n(1+αn)/2

n
(

1− αn − 2
n

) ,

where the inequality follows from Lemma 6. Therefore the term in (124) can be bounded
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by

1

n
log

∫

√
nσ2(1+αn)

0

fR(r̃)r̃
ndr̃

≤ 1

2
log σ2 − 1

2
log 2 + log n+ log(1 + αn)− 1

2
(1 + αn) +

1

n
log

1
n
2
Γ
[

n
2

]

1
(

1− αn − 2
n

)

=
1

2
log σ2 − 1

2
log 2 + logn + log(1 + αn)− 1

2
(1 + αn) +

1

n
log

1
n
2
Γ
[

n
2

] +O
(

1
n

)

=
1

2
log σ2 − 1

2
log 2 + logn + log(1 + αn)− 1

2
(1 + αn)− 1

n

(

1
2
log(πn) + n

2
log n

2e

)

+O
(

1
n

)

=
1

2
log σ2 + 1

2
logn + log(1 + αn)− 1

2
αn − 1

2n
logn +O

(

1
n

)

(a)
=

1

2
log σ2 + 1

2
log n+ 1

2
αn − 1

2n
logn +O

(

1
n

)

(a) follows from the Taylor expansion oflog(1 + ξ) at ξ = 0 and from the fact that
αn = O( 1√

n
). Plugging back to (124) combined with Lemma 9 completes the proof of the

direct part.

Proof of Converse Part:
Let ε > 0, and let{Sn}n∈N be a series of IC’s, where for eachn, Pe(Sn) ≤ ε. Our goal

is to upper bound the NLDδn of Sn for growingn.
By the sphere bound we have

ε ≥ Pe(Sn) ≥ Pr{‖Z‖ > r∗}, (125)

wherer∗ = e−δnV
−1/n
n . By Lemma 8,

ε ≥ Pr{‖Z‖ > r∗} ≥ Q

(

r∗2 − nσ2

σ2
√
2n

)

− 6T√
n
, (126)

whereT is a constant. It follows by algebraic manipulations that

δn ≤ −1

2
log

(

1 +

√

2

n
Q−1

(

ε+
6T√
n

)

)

− 1

n
log Vn −

1

2
log(nσ2). (127)

By the Taylor approximation oflog(1 + x) at x = 0 and ofQ−1(y) at y = ε, and by the
approximation (117) forVn,

δn ≤ −
√

1

2n
Q−1 (ε)− 1

2
log

2πe

n
+

1

2n
log n− 1

2
log(nσ2) +O

(

1

n

)

. (128)

By the definition ofδ∗ we finally get

δn ≤ δ
∗ −

√

1

2n
Q−1 (ε) +

1

2n
logn +O

(

1

n

)

, (129)

as required.
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Fig. 11. Low-dimensional IC’s for coding over the unconstrained AWGN. The error probability is set toε = 0.01.

VII. COMPARISON WITH KNOWN INFINITE CONSTELLATIONS

In this section we compare the finite dimensional bounds of Section IV with the perfor-
mance of some known IC’s.

We start with the low dimensional IC’s, which include classic sphere packings: the
integer lattice, the hexagonal lattice, the packingsD4, E8, BW16 and the leech lattice
Λ24 (see Conway and Sloane [12]). In low dimensions we present Monte Carlo simulation
results based on the ML decoder. In higher dimensions we consider low density lattice
codes (LDLC) [23] with dimensionsn = 100, 300, 500 and1000 (designed by Y. Yona). In
dimensionn = 127 we present the results for the packingS127 [24].

In Fig. 11 we show the gap to (Poltyrev’s) capacity of the low dimensional IC’s, where
the error probability is set toε = 0.01. As seen in the figure, these low dimensional IC’s
outperform the best achievability bound (Theorem 5). Atn = 1, the integer lattice achieves
the sphere bound (and is, essentially, the only lattice forn = 1).

From the presentation of Fig. 11 it is difficult to compare IC’s with different dimensions.
For example, the hexagonal lattice closer to the capacity than the latticeD4, and also the gap
to the sphere bound is smaller. Obviously this does not mean thatD4 is inferior. To facilitate
the comparison between different dimensions we propose thefollowing comparison: Set a
fixed value for the error probability forn = 1 denotedε1. Then define, for eachn, the
normalized error probability

εn , 1− (1− ε1)
n.
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Using this normalization enables the true comparison between IC’s with different dimen-
sions. The achieved gap to capacity with a normalized error probability remains the same
when a scheme is used sayk times, and the block length becomesk · n. For example,
the integer lattice maintains a constantδ for any n with the normalized error probability,
as opposed to the case presented in Fig. 11, where the performancedecreases. In Fig. 12
we plot the same data as in Fig. 11 for normalized error probability with ε1 = 10−5.
We also plot the normalized error probability itself for reference. In Fig. 13 we present
the performance of IC’s in higher dimensions (again, with normalized error probability
and ε1 = 10−5). The included constellations are the leech lattice again (for reference),
LDLC with n = 100, 300, 500, 1000 and degrees5, 6, 7, 7 respectively (cf. [23] and [25] for
more details on the construction of LDLC and the degree). ForLDLC’s, the figure shows
simulation results based on a suboptimal low complexity parametric iterative decoder [25].
In addition, we present the performance of the packingS127[24] (which is a multilevel coset
code[16]).

Notes:
• At higher dimensions, the performance of the presented IC’sno longer outperforms

the achievability bound.
• It is interesting to note that the Leech lattice replicated 4times (resulting in an IC

at n = 96) outperforms the LDLC withn = 100 (but remember that the LDLC
performance is based on a low complexity suboptimal decoderwhere the Leech lattice
performance is based on the ML decoder).

• The approximation (97) no longer holds formally for the caseof normalized error prob-
ability. This follows since the correction term in (97) depends on the error probability.
Nevertheless, as appears in Fig. 13, the approximation appears to still hold.

VIII. V OLUME-TO-NOISE RATIO ANALYSIS

The VNR µ, defined in (20), can describe the distance from optimality for a given IC
and noise variance, and we say that an ICS operating at noise levelσ2 is in fact operating
at VNR µ. Equivalently, we can define the VNR as a function of the IC andthe error
probability: For a given ICS and error probabilityε, let µ(S, ε) be defined as follows:

µ(S, ε) , e−2δ(S)

2πeσ2(ε)
, (130)

whereσ2(ε) is the noise variance s.t. the error probability is exactlyε. Note thatµ(S, ε)
does not depend on scaling of the ICS, and therefore can be thought of as a quantity that
depends only on the ‘shape’ of the IC.

We now define a related fundamental quantityµn(ε), as the minimal value ofµ(S, ε)
among alln-dimensional IC’s. It is known that for any0 < ε < 1, µn(ε) → 1 asn → ∞
[17]. We now quantify this convergence, based on the analysis of δε(n). It follows from
the definitions ofµn(ε) andδε(n) that the following relation holds for anyσ2:

µn(ε) =
e−2δε(n)

2πeσ2
= e2(δ

∗−δε(n)). (131)

(note thatδε(n) implicitly depends onσ2 as well). We may therefore use the results in the
paper to understand the behavior ofµn(ε). For example, any of the bounds in Theorem 3,
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Fig. 13. Performance of different constellations (dimensions24−1000) for normalized error probability, withε1 = 10−5.

Theorem 5 or the sphere bound (Theorem 2) can be applied in order to boundµn(ε) for finite
n andε. Furthermore, the asymptotic behavior ofµn(ε) is characterized by the following:

Theorem 16:For a fixed error probability0 < ε < 1, The optimal VNRµn(ε) is given
by

µn(ε) = 1 +

√

2

n
Q−1(ε)− 1

n
logn +O

(

1

n

)

. (132)

Proof: In Theorem 15 we have shown that for givenε andσ2, the optimal NLDδ is
given by

δε(n) = δ
∗ −

√

1

2n
Q−1(ε) +

1

2n
log n+O

(

1

n

)

, (133)

whereδ∗ = 1
2
log 1

2πeσ2 .
According to (131) we write

µn(ε) = exp

[

√

2

n
Q−1(ε)− 1

n
logn +O

(

1

n

)

]

= 1 +

√

2

n
Q−1(ε)− 1

n
log n+O

(

1

n

)

(134)

where the last step follows from the Taylor expansion ofex.
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IX. SUMMARY

In this paper we examined the unconstrained AWGN channel setting in the finite dimen-
sion regime. We provided two new achievability bounds and extended the converse bound
(sphere bound) to finite dimensional IC’s. We then analyzed these bounds asymptotically in
two settings. In the first setting where the NLD (which is equivalent to the rate in classic
channel coding) was fixed, we evaluated the (bounds on the) error probability when the
dimensionn grows, and provided asymptotic expansions that are significantly tighter than
those in the existing error exponent analysis. In the secondsetting, the error probabilityε is
fixed, and we investigated the optimal achievable NLD for growing n. We showed that the
optimal NLD can be tightly approximated by a closed-form expression, and the gap to the
optimal NLD vanishes as the inverse of the square root of the dimensionn. The result is
analogous to the channel dispersion theorem in classical channel coding, and agrees with the
interpretation of the unconstrained setting as the high-SNR limit of the power constrained
AWGN channel. The approach and tools developed in this papercan be used to extend the
results to more general noise models, and also to finite constellations.
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APPENDIX A
PROOF OF THEBOUNDS EQUIVALENCE

Proof of Theorem 6: It remains to show that

n

∫ 2r

0

wn−1Pr{Z ∈ D(r, w)}dw =

∫ r∗

0

fR(ρ)ρ
ndρ. (135)

Lemma 10:For Z ∼ N(0, Iσ2), and anyr ≥ w/2 ≥ 0,

Pr{Z ∈ D(r, w)} =

∫ r

w/2

fZ(z)

∫

√
r2−z2

σ

0

fχn−1(t)dtdz, (136)

whereD(w, r) was defined after Eq. (23),fZ(z) = 1√
2πσ2

e−z2/(2σ2) is the pdf of aN(0, σ2)

random variable, andfχn−1(t) =
tn−2e−t2/2

2
n−1
2 −1Γ(n−1

2 )
is the pdf of aχ random variable withn−1

degrees of freedom.
Proof: By the spherical symmetry of the Gaussian pdf, we may assume w.l.o.g. that
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the hyperplane at distancew
2

is perpendicular to theZ1 axis. We therefore have

Pr{Z ∈ D(w, r)} = Pr{Z1 >
w

2
, ‖Z‖ ≤ r}

= Pr

{

Z1 >
w

2
,

n
∑

i=1

Z2
i ≤ r2

}

=

∫ r

w/2

fZ(z) Pr

{

n
∑

i=1

Z2
i ≤ r2|Z1 = z

}

dz

=

∫ r

w/2

fZ(z) Pr

{

n
∑

i=2

Z2
i ≤ r2 − z2

}

dz

=

∫ r

w/2

fZ(z) Pr







1

σ

√

√

√

√

n
∑

i=2

Z2
i ≤

√
r2 − z2

σ







dz

=

∫ r

w/2

fZ(z)

∫

√
r2−z2

σ

0

fχn−1(t)dtdz,

where the last equality follows from the fact that aχn−1 random variable is equivalent to
the square root of a sum ofn−1 independent squared standard Gaussian random variables.

We use the result of the lemma and get

n

∫ 2r

0

wn−1Pr{Z ∈ D(r, w)}dw

=n

∫ 2r

0

wn−1

∫ r

w/2

fZ(z)

∫

√
r2−z2

σ

0

fχn−1(t)dtdzdw

=n

∫ 2r

0

∫ r

w/2

wn−1fZ(z)

∫

√
r2−z2

σ

0

fχn−1(t)dtdzdw

(a)
=n

∫ r

0

∫ 2z

0

wn−1fZ(z)

∫

√
r2−z2

σ

0

fχn−1(t)dtdwdz

=

∫ r

0

∫

√
r2−z2

σ

0

(2z)nfZ(z)fχn−1(t)dtdz,

were (a) follows from changing the order of integration. We setu = z/σ and get

∫ r/σ

0

∫

√
r2/σ2−u2

0

(2σu)nσfZ(σu)fχn−1(t)dtdu

=

∫ r/σ

0

∫

√
r2/σ2−u2

0

(2σu)n
1√
2π

e−u2/2 tn−2e−t2/2

2
n−1
2

−1Γ
(

n−1
2

)
dtdu

=
2

n
2
+1σn

√
πΓ
(

n−1
2

)

∫ r/σ

0

∫

√
r2/σ2−u2

0

untn−2e−(u2+t2)/2dtdu.
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We switch to polar coordinates and setu = ρ cos θ andt = ρ sin θ. The expression becomes

2
n
2
+1σn

√
πΓ
(

n−1
2

)

∫ r/σ

0

∫ π/2

0

ρ2n−1 cosn θ sinn−2 θe−ρ2/2dθdρ

=
2

n
2
+1σn

√
πΓ
(

n−1
2

)

∫ r/σ

0

ρ2n−1e−ρ2/2dρ

∫ π/2

0

cosn θ sinn−2 θdθ. (137)

It can be shown using e.g. [26, Eqs. 18.32 and 25.9] that
∫ π/2

0

cosn θ sinn−2 θdθ =
2−n

√
πΓ
(

n−1
2

)

Γ
(

n
2

) . (138)

Equation (137) now simplifies to

21−
n
2 σn

Γ
(

n
2

)

∫ r/σ

0

ρ2n−1e−ρ2/2dρ

=σn

∫ r/σ

0

fχn(ρ)ρ
ndρ

=σn

∫ r/σ

0

σfR(σρ)ρ
ndρ

=

∫ r

0

fR(ρ
′)ρ′ndρ′

=

∫ r

0

fR(ρ)ρ
ndρ,

wherefχn(·) is the pdf of aχ random variable withn degrees of freedom, andfR(·) is the
pdf of ‖Z‖. This completes the proof of the theorem.

APPENDIX B
PROPERTIES OFREGULAR IC’ S

Proof of Lemma 2:Let S be a regular IC with a givenr0. Let V(a) denote the union
of all the Voronoi cells of code points inCb(a):

V(a) ,
⋃

s∈S∩Cb(a)

W (s). (139)

Since all Voronoi cells are bounded in spheres of radiusr0, we note the following (for
a > 2r0):

• All the Voronoi cells of the code points inCb(a) are contained inCb(a + 2r0), and
thereforeV(a) ⊆ Cb(a+ 2r0).

• Any point in Cb(a− 2r0) must be in a Voronoi cell of some code point. These code
points cannot be outsideCb(a) because the Voronoi cells are bounded in spheres of
radiusr0, so they must lie withinCb(a), and we get thatCb(a− 2r0) ⊆ V(a).

It follows that
(a− 2r0)

n ≤ |V(r)| ≤ (a+ 2r0)
n,

or
(a− 2r0)

n ≤
∑

s∈S∩Cb(a)

v(s) ≤ (a + 2r0)
n. (140)
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Dividing by an and taking the limit ofa → ∞ gives

lim
a→∞

∑

s∈S∩Cb(a) v(s)

an
= 1. (141)

Since, by assumption, the limit of the densityγ(S) exists, we get

γ(S) = lim
a→∞

M(S, a)
an

= lim
a→∞

M(S, a)
∑

s∈S∩Cb(a) v(s)

=
1

lima→∞ Ea[v(S)]

=
1

v(S) . (142)

As a corollary, we get that for regular IC’s the average volume v(S) exists in the limit (and
not only in thelim sup sense).

APPENDIX C
CONVEXITY OF THE EQUIVALENT SPHERE BOUND

Proof of Lemma 3:
Supposev is the volume of the Voronoi cell. The radius of the equivalent sphere is given

by r = v1/nV
−1/n
n . The equivalent sphere bound is given by

SPB(v) = Pr

{

n
∑

i=1

Z2
i ≥ r2

}

= Pr

{

n
∑

i=1

(Zi/σ)
2 ≥ v2/n

V
2/n
n σ2

}

, Pr

{

n
∑

i=1

(Zi/σ)
2 ≥ (C1 · v)2/n

}

, (143)

whereC1 is a constant.
We note that

∑n
i=1(Zi/σ)

2 is a sum ofn i.i.d. squared Gaussian RV’s with zero mean and
unit variance, which is exactly aχ2 distribution withn degrees of freedom. We therefore
get:

SPB(v) =
1

Γ(n/2)2n/2

∫ ∞

(C1·v)2/n
xn/2−1e−x/2dx

= C2

∫ ∞

(C1·v)2/n
xn/2−1e−x/2dx

, C2F (C1 · v), (144)

whereC2 is a constant andF (t) ,
∫∞
t2/n

xn/2−1e−x/2dx. It can be verified by straightforward
differentiation that

∂2

∂t2
F (t) =

∂2

∂t2

∫ ∞

t2/n
xn/2−1e−x/2dx =

2

n2
t
2
n
−1 exp

(

−1

2
t2/n
)

, (145)

which is strictly positive for allt > 0. ThereforeF (t) is convex, and the equivalent sphere
bound SPB(v) = C2F (C1 · v) is a convex function ofv.
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APPENDIX D
PROOF OF THEREGULARIZATION LEMMA

Proof of Lemma 4: Our first step will be to find a hypercubeCb(a∗), so that the
density of the points inS ∩ Cb(a∗) and the error probability of codewords inS ∩ Cb(a∗)
are close enough toγ and ε, respectively. We then replicate this cube in order to get a
regular IC with the desired properties. The idea is similar to that used in [3, Appendix C],
where it was used for expurgation purposes. As discussed in IV-D above, we wish to avoid
expurgation process that weakens the bound for finite dimensional IC’s.

By the definition ofPe(S) andγ(S),

γ(S) = lim sup
a→∞

M(S, a)
an

= lim
a→∞

sup
b>a

M(S, b)
bn

(146)

ε = Pe(S) = lim sup
a→∞

1

M(S, a)
∑

s∈S∩Cb(a)

Pe(s) = lim
a→∞

sup
b>a

1

M(S, b)
∑

s∈S∩Cb(b)

Pe(s). (147)

Let τγ =
√
1 + ξ andτε = 1 + ξ

2
.

By definition of the limit, there must exista0 large enough s.t. for everya > a0, both
hold:

sup
b>a

M(S, b)
bn

> γ · 1

τγ
, (148)

and
sup
b>a

1

M(S, b)
∑

s∈S∩Cb(b)

Pe(s) < ε · τε. (149)

Define∆ s.t.Q(∆/σ) = ε · ξ
2
, and definea∆ as the solution to
(

a∆ + 2∆

a∆

)n

=
√

1 + ξ. (150)

Let amax = max{a0, a∆}. According to (148), there must exista∗ > amax s.t.

M(S, a∗)
an∗

> γ · 1

τγ
. (151)

By (149) we get that

1

M(S, a∗)
∑

s∈S∩Cb(a∗)

Pe(s) ≤ sup
b>amax

1

M(S, b)
∑

s∈S∩Cb(b)

Pe(s) < ε · τε. (152)

Now consider thefinite constellationG = S ∩ Cb(a∗). For s ∈ G, denote byPG
e (s) the

error probability ofs whenG is used for transmission with Gaussian noise. SinceG ⊂ S,
clearlyPG

e (s) ≤ Pe(s) for all s ∈ G. The average error probability forG is bounded by

Pe(G) ,
1

|G|
∑

s∈G
PG
e (s) ≤ 1

|G|
∑

s∈G
Pe(s) ≤ ε · τε. (153)

We now turn to the second part - constructing an IC from the code G.
Define the ICS ′ as an infinite replication ofG with spacing of2∆ between every two

copies as follows:
S ′ , {s+ I · (a∗ + 2∆) : s ∈ G, I ∈ Zn} , (154)
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whereZn denotes the integer lattice of dimensionn.
Now consider the error probability of a points ∈ S ′ denoted byP S′

e (s). This error
probability equals the probability of decoding by mistake to another codeword from the
same copy ofG or to a codeword in another copy. By the union bound, we get that

P S′

e (s) ≤ PG
e (s) +Q(∆/σ). (155)

The right term follows from the fact that in order to make a mistake to a codeword in a
different copy ofG, the noise must have an amplitude of at least∆. The average error
probability overS ′ is bounded by

Pe(S ′) ≤ Pe(G) +Q(∆/σ) ≤ ε · τε +Q(∆/σ) = ε(1 + ξ) (156)

as required, where the last equality follows from the definition of τε and∆.
The density of points in the new IC enclosed within a cube of edge sizea∗+2∆ is given

by |G|(a∗ + 2∆)−n. Define ãk = (a∗ + 2∆)(2k − 1) for any integerk. Note that for any
k > 0, Cb(ãk) contains exactly(2k − 1)n copies ofG, and therefore

M(S ′, ãk)

ãnk
=

|G|(2k − 1)n

ãnk
=

|G|
(a∗ + 2∆)n

. (157)

For anya > 0, let k∗ be the minimal integerk s.t. ãk ≥ a. Clearly,

ãk∗−1 = ãk∗ − (a∗ + 2∆) < a ≤ ãk∗ . (158)

Therefore
M(S ′, ãk∗−1)

an
<

M(S ′, a)

an
≤ M(S ′, ãk∗)

an
, (159)

and
|G|

(a∗ + 2∆)n
ãnk∗−1

an
<

M(S ′, a)

an
≤ |G|

(a∗ + 2∆)n
ãnk∗

an
. (160)

By taking the limita → ∞ of (160), we get that the limit exists and is given by

γ(S ′) = lim
a→∞

M(S ′, a)

an
=

|G|
(a∗ + 2∆)n

. (161)

It follows that

γ(S ′) =
|G|

(a∗ + 2∆)n

=
|G|
an∗

an∗
(a∗ + 2∆)n

(a)

≥ γ(S) 1
τγ

(

a∗
a∗ + 2∆

)n

(b)

≥ γ(S) 1

1 + ξ
. (162)

where(a) follows from (151) and(b) follows from the definitions ofτγ , a∆ and from the
fact thata∆ ≤ a∗.

It remains to show that the resulting ICS ′ is regular, i.e. that all the Voronoi cells can be
bounded in a sphere with some fixed radiusr0. The fact that the average density is achieved
in the limit (ant not only in thelim sup sense) was already established in (161).



INGBER ET AL.: FINITE DIMENSIONAL INFINITE CONSTELLATIONS 47

Let s be an arbitrary point inS ′. By construction (see (154)), the points

{s± (a∗ + 2∆)ei|i = 1, ..., n}

are also inS ′ (where ei denotes the vector of1 in the i-th coordinate, and the rest are
zeros). We therefore conclude that the Voronoi cellW (s) is contained in the hypercube
s+Cb(a∗ + 2∆), and is clearly bounded within a sphere of radiusr0 ,

√
n(a∗ + 2∆).

APPENDIX E
PROOF OFINTEGRAL BOUNDING LEMMAS

Proof of Lemma 5: Define

F (ρ) , log
[

ρ
n
2
−1e−nρ/2

]

=
(n

2
− 1
)

log ρ− nρ

2
,

so thatρ
n
2
−1e−nρ/2 = exp[F (ρ)]. Let F1(ρ) andF2(ρ) be the first and second order Taylor

series ofF (ρ) aroundρ = x, respectively, i.e.

F1(ρ) = α + β(ρ− x); F2(ρ) = α + β(ρ− x)− τ 2(ρ− x)2 (163)

where

α ,

(n

2
− 1
)

log x− nx

2
;

β ,

n
2
− 1

x
− n

2
;

τ ,

√

n
2
− 1

2x2
.

We note that for anyξ > 0,

ξ − ξ2

2
≤ log(1 + ξ) ≤ ξ. (164)

It follows that for all ρ > x,
F2(ρ) ≤ F (ρ) ≤ F1(ρ), (165)

and the integral is bounded from above and below by
∫ ∞

x

eF2(ρ)dρ ≤
∫ ∞

x

ρ
n
2
−1e−nρ/2dρ ≤

∫ ∞

x

eF1(ρ)dρ. (166)

To prove the upper bound (60) we continue with
∫ ∞

x

eF (ρ)dρ ≤
∫ ∞

x

eF1(ρ)dρ

= eα
∫ ∞

x

exp [β(ρ− x)] dρ

=
eα

−β
,

where the last equality follows from the assumptionx > 1 − 2
n
. Plugging the values forα

andβ yields (60).
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To prove the lower bound (60) we write

∫ ∞

x

eF (ρ)dρ ≥
∫ ∞

x

eF2(ρ)dρ

=

∫ ∞

x

exp
[

α + β(ρ− x)− τ 2(ρ− x)2
]

dρ

=

∫ ∞

0

exp
[

α + βρ− τ 2ρ2
]

dρ

= exp

(

α +
β2

4τ 2

)
∫ ∞

0

exp

[

−
(

τρ− β

2τ

)2
]

dρ

= exp

(

α +
β2

4τ 2

) √
π

τ

∫ ∞

0

τ√
π
exp

[

−τ 2
(

ρ− β

2τ 2

)2
]

dρ

= exp

(

α +
β2

4τ 2

) √
π

τ
Q

( −β

τ
√
2

)

.

Plugging back the values forα, β and τ leads to (61).
We continue with a well known lower bound for theQ function:

Q(z) ≥ 1√
2πz

e−z2/2

(

1

1 + z−2

)

∀z > 0. (167)

Recalling the definition ofΥ, we write

∫ ∞

x

ρ
n
2
−1e−nρ/2dρ ≥ 2x

n
2 e−

nx
2 exp

[

Υ2/2
]

√

π

n− 2
Q (Υ)

≥ 2x
n
2 e−

nx
2

n(x− 1 + 2
n
)

(

1

1 + Υ−2

)

,

to arrive at (62). Eq. (63) follows immediately since1− ξ ≤ 1
1+ξ

for all ξ ∈ R.

Proof of Lemma 6: We rewrite the integrand aseG(ρ) whereG(ρ) , −nρ/2 + (n −
1) log ρ. SinceG(ρ) is concave, it is upper bounded its first order Taylor approximation
at any point. We choose the tangent atρ = x. We denote byG1(ρ) the first order Taylor
approximation at that point, and get

G(ρ) ≤ G1(ρ) , G(x) +G′(x)(ρ− x), (168)

whereG′(ρ) = ∂G(ρ)
∂ρ

= −n
2
+ n−1

ρ
. It follows that

G1(ρ) = (n− 1)(log x− 1) +

(

−n

2
+

n− 1

x

)

ρ.
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SinceG(ρ) ≤ G1(ρ) for all ρ, we have
∫ x

0

e−nρ/2ρn−1dρ =

∫ x

0

eG(ρ)dρ

≤
∫ x

0

eG1(ρ)dρ

= xn−1e−(n−1)

∫ x

0

exp

[(

−n

2
+

n− 1

x

)

ρ

]

dρ

=
2xn

n
(

2− x− 2
n

)

(

e−
n
2
x − e−(n−1)

)

, (169)

which gives (75).
Some extra effort is required in order to prove the lower bound (76). We first switch

variables and get
∫ x

0

e−nρ/2ρn−1dρ =

∫ ∞

1/x

e−
n
2uu−n−1du (170)

=

∫ ∞

1/x

exp
(

− n

2u
− (n+ 1) log u

)

du. (171)

We lower bound the exponent as follows:

− n

2u
− (n + 1) log u = − n

2u
+ (n + 1)(log x− log(ux))

= − n

2u
+ (n + 1)(log x− log(1 + ux− 1))

(a)

≥ − n

2u
+ (n+ 1)(log x− (ux− 1))

(b)

≥ −nx

2
(u2x2 − 3ux+ 3) + (n+ 1)(log x− (ux− 1))

= −nx

2
[x2(u− 1/x)2 − x(u− 1/x) + 1] + (n+ 1)(log x− x(u− 1/x)).

(a) follows from the fact thatlog(1 + ξ) ≤ ξ for all ξ ∈ R. (b) follows from the fact that
1
ξ
≤ ξ2 − 3ξ + 3 for all ξ > 1 (which follows from the fact that(ξ − 1)3 ≥ 0).
So far the integral

∫ x

0
e−nρ/2ρn−1dρ is lower bounded by
∫ ∞

1/x

exp(α + β(u− 1/x)− τ 2(u− 1/x)2)du, (172)

where

α , (n+ 1) log x− nx

2
;

β ,
nx2

2
− (n + 1)x;

τ ,

√

nx3

2
.

Following the same steps as in the proof of (55) in Lemma 5 gives
∫ ∞

1/x

exp(α + β(u− 1/x)− τ 2(u− 1/x)2) ≥ exp

(

α +
β2

4τ 2

) √
π

τ
Q

( −β

τ
√
2

)

. (173)
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Plugging the values forα, β and τ yields (76). (77) follows by applying the lower bound
(167) on theQ function.

APPENDIX F
APPROXIMATING Vn

Here we derive the required approximations forVn, used in Sections V and VI.
We first derive (64).
The volume of a hypersphere of unit radiusVn is given by πn/2

Γ(n/2+1)
(see, e.g. [12, p. 9]).

We use the Stirling approximation for the Gamma function forz ∈ R (see, e.g. [27, Sec.
5.11]).

Γ(z + 1) = zΓ(z) = z

√

2π

z

(z

e

)z
(

1 +O

(

1

z

))

=
√
2πz

(z

e

)z
(

1 +O

(

1

z

))

. (174)

Vn becomes

Vn =
πn/2

Γ(n/2 + 1)
=

(

2πe

n

)n/2
1√
nπ

(

1 +O

(

1

n

))

. (175)

Eq. (117) follows by taking1
n
log(·) and the Taylor expansion oflog(1+x) aroundx = 0:

1

n
log Vn =

1

2
log π − 1

2n
logn− 1

2
log

n

2e
+O

(

1

n

)

=
1

2
log

2πe

n
− 1

2n
logn +O

(

1

n

)

. (176)

APPENDIX G
EVALUATING THE ML B OUND AT δcr

Proof of Theorem 12:We start as in the proof of Theorem 5 to have

enδcrVn

∫ r∗

0

fR(r)r
ndr =

n

2
enδV 2

n σ
n(2π)−

n
2 nn

∫ ρ∗

0

e−nρ/2ρn−1dρ. (177)

We evaluate the integral in two parts:
∫ ρ∗

0

e−nρ/2ρn−1dρ =

∫ 2

0

e−nρ/2ρn−1dρ+

∫ ρ∗

2

e−nρ/2ρn−1dρ. (178)

The term
∫ 2

0
e−nρ/2ρn−1dρ can be evaluated by the Laplace method, as in the proof of

Lemma 7. The difference is that the exponent is minimized with zero first derivative at the
boundary pointρ = 2, which causes the integral to be evaluated to half the value of the
integral in Lemma 7, i.e.

∫ 2

0

e−nρ/2ρn−1dρ =

√

π

2n
e−n2n

(

1 +O
(

1
n

))

. (179)



INGBER ET AL.: FINITE DIMENSIONAL INFINITE CONSTELLATIONS 51

The second term in (178) requires some extra effort. We first upper bound it as follows:
∫ ρ∗

2

e−nρ/2ρn−1dρ =

∫ ρ∗

2

1

ρ
e−nρ/2ρndρ

(a)

≤
∫ ρ∗

2

1

2
e−nρ/2ρndρ

(b)

≤
∫ ρ∗

2

1

2
e−n2ndρ

=
1

2
e−n2n(ρ∗ − 2),

where (a) follows since in the integration interval,ρ > 2. (b) follows sincee−nρ/2ρn is
maximized atρ = 2. With (66) we have

∫ ρ∗

2

e−nρ/2ρn−1dρ ≤ 1

2
e−n2n(ρ∗ − 2)

=
1

2
e−n2n

(

2
n
log(nπ) +O

(

log2 n
n2

))

= e−n2n
log(nπ)

n

(

1 +O
(

logn
n

))

.

The integral can also be lower bounded as follows:
∫ ρ∗

2

e−nρ/2ρn−1dρ
(a)

≥ 1

ρ∗

∫ ρ∗

2

e−nρ/2ρndρ

(b)

≥ 1

ρ∗

∫ ρ∗

2

en log
2
e
−n

8
(ρ−2)2dρ

=
1

ρ∗
2ne−n

∫ ρ∗

2

e−
n
8
(ρ−2)2dρ

=
1

ρ∗
2ne−n

∫ ρ∗−2

0

e−
n
8
ρ2dρ

=
1

ρ∗
2ne−n

√

8π

n

(

Q(0)−Q

(

ρ∗−2√
4/n

))

(c)
=

1

ρ∗
2ne−n

√

8π

n

(

1
2
−
(

1
2
− 1√

2π

ρ∗−2√
4/n

+O
(

log2 n
n

)

))

=
1

ρ∗
2ne−n

(

ρ∗ − 2 +O
(

log2 n
n
√
n

))

= 2ne−n log(nπ)

n

(

1 +O
(

logn√
n

))

.

(a) follows sinceρ ≤ ρ∗. (b) follows from the fact thatnρ/2+n log ρ ≥ n log 2
e
− n

8
(ρ−2)2

for all ρ > 2 (which follows from (164)).(c) follows from the Taylor expansionQ(ξ) =
1
2
− ξ√

2π
+O(ξ2) and sinceρ∗ − 2 = O( logn

n
).

In total we get
∫ ρ∗

2

e−nρ/2ρn−1dρ = 2ne−n log(nπ)

n

(

1 + O
(

logn√
n

))

.
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Combined with (179) we have
∫ ρ∗

0

e−nρ/2ρn−1dρ =

∫ 2

0

e−nρ/2ρn−1dρ+

∫ ρ∗

2

e−nρ/2ρn−1dρ

= 2ne−n

[
√

π

2n
+

log(nπ)

n

]

(

1 +O
(

log2 n
n

))

.

The approximation (64) forVn finally yields

enδcrVn

∫ r∗

0

fR(r)r
ndr = e−nEr(δcr)

1

2π

[
√

π

2n
+

log(nπ)

n

]

(

1 +O
(

log2 n
n

))

, (180)

and the proof is completed by adding the asymptotic form (58)of the sphere bound at
δ = δcr.

APPENDIX H

Proof of Theorem 13:The typicality bound is given by

Pe(n, δ) ≤ γVnr
n + Pr {‖Z‖ > r} , (181)

where r = σ
√

n(1 + 2δ∗ − 2δ). The rightmost term can be written as (see the proof of
Theorem 9):

Pr {‖Z‖ > r} =
(n/2)n/2

Γ
[

n
2

]

∫ ∞

1+2(δ∗−δ)

ρ
n
2
−1e−

n
2
ρdρ. (182)

The above integral can be bounded according to Lemma 5 by

2x
n
2 e−

nx
2

n(x− 1 + 2
n
)

1

1 + Υ−2
≤
∫ ∞

x

ρ
n
2
−1e−

n
2
ρdρ ≤ 2x

n
2 e−

nx
2

n(x− 1 + 2
n
)

(183)

wherex = 1 + 2(δ∗ − δ) andΥ ,
n(x−1+ 2

n
)√

2(n−2)
= Θ(

√
n). Eq. (92) then follows using the

approximation (64) forVn.

APPENDIX I

Proof of Theorem 14:We first prove (93) (and (94) follows immediately). Letρ̃ =
e2(δ

∗−δ). The ML bounds forr =
√
nσeδ

∗−δ can be written as (see (59) and (74)):

PMLB
e =

n

2
en(δ

∗+δ)V 2
n e

n/2σ2nnn

∫ ρ̃

0

e−nρ/2ρn−1dρ+
2−n/2nn/2

Γ(n/2)

∫ ∞

ρ̃

e−nρ/2ρn/2−1dρ.

Using Lemma 5 we get that
∫ ∞

ρ̃

e−nρ/2ρn/2−1dρ =
2ρ̃n/2e−nρ̃/2

n(ρ̃− 1)

(

1 +O

(

1

n

))

, (184)

and using Lemma 6 we get that
∫ ρ̃

0

e−nρ/2ρn−1dρ =
2ρ̃n/2e−nρ̃/2

n(2− ρ̃)

(

1 +O

(

1

n

))

. (185)

(93) then follows by simple algebra.
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To show (95), repeat the proof of Theorem 11 withρ̃ instead ofρ∗.

To show (96), repeat the proof of Theorem 12 withρ̃ instead ofρ∗. Here ρ̃ = 2,
therefore there is no need to split the integral into two parts as in (178). Therefore the
term enδVn

∫ r

0
fR(r̃)r̃

ndr̃ contributes the 1√
8

part of the expression. The contribution of the
sphere bound term (the termPr{‖Z‖ > r}) is approximated as in (184). Note that the result
here is different than thereff case, where the contributions of the two terms in the bound
are of different order (see Eq. (89)).

APPENDIX J
CENTRAL L IMIT THEOREM AND THE BERRY-ESSEENTHEOREM

By the central limit theorem (CLT), A normalized sum ofn independent random variables
converges (in distribution) to a Gaussian random variable.The Berry-Esseen theorem shows
the speed of the convergence (see [28, Ch. XVI.5]). We write here the version for i.i.d.
random variables, which is sufficient for this paper.

Theorem 17 (Berry-Esseen for i.i.d. RV’s [28]):Let {Yi}ni=1 be i.i.d. random variables
with zero mean and unit variance. LetT , E[|Yi|3] and assume it is finite. LetSn ,
1√
n

∑n
i=1 Yi be the normalized sum. Note thatSn also has zero mean and unit variance.

Then for allα ∈ R and for alln ∈ N,

|Pr{Sn ≥ α} −Q(α)| ≤ 6T√
n
. (186)
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